This question paper contains 7 printed pages]

Your Roll No.....

1955

B.Sc. (H) Computer Science/VI Scm. C

Paper 601: THEORY OF COMPUTATION

(Admissions of 2001 and onwards)

Time: 3 Hours

Maximum Marks: 75

(Write your Roll No. on the top immediately on receipt of this question paper.)

Question No. 1 (Section A) is compulsory.

Attempt any four questions from Section B.

Parts of a question should be attempted together.

Assume $\Sigma = \{a, b\}$ for all the questions unless specified otherwise.

Section A

1. (a) Let $S = \{ab, bb\}$ and $T = \{ab, bb, bbb\}$. 2

Show that:

 $S^* = T^*$.

(b) Define deterministic finite automata.

2

(c) Consider the CFG

2

$$S \rightarrow XaXaX$$

$$X \rightarrow bX|aX| \land$$

Describe the language this CFG generates.

- (d) What is a "dead-end state" in a finite automata?

 Explain with an example.
- (e) Write the regular expression for the language having words in which a appears tripled (in clumps of 3), if at all.
- (f) Describe the language for the given finite automata:

(g) Build a finite automata that have only those words that have length fewer than four letters.

- (h) Design a turing machine that erases all characters in its tape.
- (i) Describe the language for the following regular expression:
 - (i) bba*(a + b)
 - (ii) $((a + b)a)^*$.
- (j) Using bypass algorithm, convert the following transition graph into a regular expression:

(k) Construct a PDA for a language

 $L = \{a^nS, \text{ where } S \text{ starts with } b \text{ and } Length (S) = n\}.$

(1) Using pumping lemma, show that language 4

{aⁿ bⁿ where n is square of 1, 2, 3,.......}

- {ab. aaaaabbbb. aaaaaaaaabbbbbbbbbb,......}

is non-regular.

Section B

(a) Given finite automata machine FA₁. Using Kleene's theorem algorithm, find (FA₁)*:

(b) Convert the following non-deterministic finite automata to deterministic finite automata:

1955

(5)

3.	(a)	For the following pairs of regular language, build	a
		finite automata and regular expression that defin	e
	-	$L_1 \cap L_2$:	6
		L ₁ : (ab*)*	
		$L_2 : a(a + b)^*.$	
	(b)	Prove that the language	4
		$\{a^n \ b^n \ c^n \ where \ n = 1, 2, 3, 4\}$	

is non-context free.

- 4. (a) Find the CFG for the language containing all words that have different first and last letters.
 - (b) Show that the following CFG is ambiguous: 5

$$S \rightarrow XaX$$

$$X \rightarrow aX|bX| \land$$

- 5. (a) Describe universal Turing Machine.
- 4
- (b) Prove that a language is recursive language then its complement L' is also recursive.
- 6. (a) Given a PDA:

- (i) Write the language represented by this PDA.
- (ii) Trace the PDA for the string bbba.

(b) Describe the function of the following Turing Machine using the string $Uw\underline{U}$ where a is any letter from alphabet set :

- 7. (a) If $\Sigma = \{x\}$, then what is Σ^+ ? Is $\Sigma^+ = \Sigma^*$?
 - (b) Build a finite automata that accepts only those words that do not end with ba.
 - (c) Prove that if L_1 and L_2 are Regular Languages, then $L_1 + L_2$, L_1 L_2 are also Regular Languages.

1955 7 700