This	question	рарег	contains	3	pri	nted	pages	5.]
				Yo	ur	Roll	No.	*******

1392 A

B.Sc. (Hons.)/I

ELECTRONIC SCIENCE—Paper 1.1 (I) (Mechanics and Strength of Materials)

Time: 3 Hours Maximum Marks: 38

(Write your Roll No. on the top immediately on receipt of this question paper.)

Attempt five questions in all, including

Q. No. 1 which is compulsory.

Marks are indicated against each question.

- 1. (a) How can a two-body problem be reduced to an equivalent one-body problem?
 - (b) A reference frame rotates with a uniform angular accelaration with respect to an inertial frame. Give the expression for the fictitious forces.
 - (c) Show that the conservation of linear momentum is invariant under a Galilean transformation.
 - (d) Why is a hollow shaft more rigid than a solid shaft of the same mass, length and material?
 - (e) Draw the shear force and bending moment diagram in case of a weightless cantilever loaded at its free end.

 $2 \times 5 = 10$

1392		(2)						
2.	(a)	Derive an expression for the gravitational potential and						
		field at a point inside and outside a uniform solid sphere.						
		3 + 1						
	(b)	State and prove Kepler's third law of planetary motion.						
	-	3						
3	(a)	Describe the Michelson Morley experiment. How is the						
		negative result of this experiment explained?						
	(b)	A photon and a relativistic electron have a common						
		Compton wavelength. Compare their momenta,						
		relativistic masses and kinetic energies.						
4.	(a)	Derive an expression for the relativistic mass as a						
		function of the velocity of a particle of mass m _o . 5						
	(b)	What is the twin paradox in special theory of relativity?						
		2						
5.	(a)	Define the Young's modulus of a material and relate it						
		to Poisson's ratio and bulk modulus of the material. 3						
	(b)	A cantilever of length <i>l</i> is clamped rigidly in a wall at						
		the left end and carries a load W at its right end. The						
		cantilever has a small weight w. Calculate deflection						
		under the load.						
6.		Define the terms shear force and bending momemt. 2						
	(b)	A simply supported beam of length 10 m carries a						
		uniformly distributed load of 10 N/m over half its length						
		starting from A at 4 m from the left support to B where						
		a concentrated load of 100 N is also situated. Draw						

shear force and bending moment diagrams.

5

(3) . 1392

- 7. (a) Derive an expression for the torque required to twist a hollow cylinder.
 - (b) Prove the relation:

$$M = \frac{YI}{R}$$

for the bending moment produced in a beam bent in the arc of a circle of radius R, where Y is the Young's modulus of the material and I is the geometrical inertia of the cross-section.

*