This	question paper contains 3 printed pages.]
	Your Roll No
1397	A
B.Sc. (Hons.)/I	
ELECTRONICS—Paper 1.6 (VI)	
(Mathematical Physics—I)	
Time	: 3 Hours Maximum Marks : 38
	(Write your Roll No. on the top immediately
	on receipt of this question paper.)
	Attempt five questions in all
	Question No. 1 is compulsory.
	Attempt at least one question from each Section.
1. Attempt any five of the following:	
(a)	Given the Eigenvalues of a matrix A, what are the values
	of determinant of A and trace of A. 2
(b)	Show that a hermitian matrix can be expressed as a
	sum of hermitian matrix. 2
(c)	Prove the law of sine for a triangle? 2
(d)	Show $\nabla(r ^n) = n r ^{n-2}\overline{r}$
(e)	What are isotropic tensors? 2
(f)	Prove $\delta_{ij} \in_{ijk} = 0$
SECTION-A	
2. (a)	Verify the Green's theorem for $\oint (xy + y^2) dx + x^2 dy$;
	where 'c' is a curve bounded by $y = x$ and $y = x^2$. 5
	[P.T.O.

1397 (2)

- (b) Find the directional derivative of $\phi = x^2 y^2 + 4x + 2^2$ at (1, -2, -1) in the direction of $2\hat{i} \hat{j} 2\hat{k}$.
- 3. (a) Evaluate $\int_{S} A.nds$, where $\bar{A} = \mathcal{Z}\hat{i} + x\hat{j} 3y^2 \mathcal{Z}\hat{k}$ and 'S' is the surface of the cylinder $x^2 + y^2 = 16$, included in the first octant between $\mathcal{Z} = 0$ and $\mathcal{Z} = 5$.
 - (b) Prove that cylindrical co-ordinate system is orthogonal.

3

5

SECTION-B

- 4. (a) Show $\in_{rmn} \in_{rpq} = \delta_{mp} \delta_{nq} \delta_{mq} \delta_{np}$ 3
 - (b) Prove the identity using tensor notation. $\overrightarrow{\nabla} \times (\overrightarrow{u} \times \overrightarrow{w}) = (\overrightarrow{w} \cdot \overrightarrow{\nabla}) \cdot \overrightarrow{u} + \overrightarrow{u} \cdot (\overrightarrow{\nabla} \cdot \overrightarrow{w}) (\overrightarrow{u} \cdot \overrightarrow{\nabla}) \cdot \overrightarrow{w} \overrightarrow{w} \cdot (\overrightarrow{\nabla} \cdot \overrightarrow{u})$ 4
- 5. (a) Obtain the components of the stress tensor, the strain tensor and write the generalised form of the Hooke'sLaw in tensor notation.
 - (b) Show that $\in ijk \in ijk = 6$

SECTION-C

6. (a) Find the diagonalizing matrix P for the given matrix A:

$$A = \begin{pmatrix} -2 & 0 & -1 \\ 0 & 2 & 0 \\ 3 & 0 & 2 \end{pmatrix}$$

(b) Determine whether the 4 vectors u = (1, 2, 3), v = (2, 0, -1), W = (1, -1, 1) and X = (2, 1, 0) are linearly dependent or independent.

(3) 1397

7. (a) Reduce the following coupled differential equations to an eigenvalue problem and solve:

5

$$y_1 = -8y_1 + 2y_2; y_1(0) = 6, y_1(0) = 2$$

$$y_2 = -3y_1 + 3y_2; y_2(0) = -3, y_2(0) = -1$$

(b) Show that matrix $A = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & i \\ -i & -1 \end{pmatrix}$ is unitary.