B.Sc. (Hons.)/I		
	ELECTRONIC SCIENCE—Paper 1.4 (IV)	
	(Semiconductor and Solid State Devices)	
Time :	3 Hours Maximum Marks: 38	
	(Write your Roll No. on the top immediately	
	on receipt of this question paper.)	
	Attempt five questions in all, including	
	Q. No. 1 which is compulsory.	
1. (a)	What are Miller indices? Draw the cubic crystal planes	
	represented by Miller indices (110) and (111).	
(b)	How does the mobility vary with temperature for (i)	
	lightly doped; (ii) heavily doped semiconductors.	
(c)	Draw the depletion layer width and energy band	
	diagrams of a p-n junction under various biasing	
	conditions.	
(d)	Explain Base Width Modulation for a common emitter	
	configuration of a BJT.	
(c)	Compare advantages and disadvantages of FET over	
	BJT. $2 \times 5 = 10$	
2. (a)	Show that the Fermi level of an intrinsic semiconductor	
	lies very closed to the middle of the bandgap. How	
	does the intrinsic carrier density depend upon the	
	bandgap. 5	
	[P.T.O.	

This question paper contains 3 printed pages.]

1395

Your Roll No.

A

1395 (2)

- (b) Obtain expression for electron and hole densities in terms of intrinsic carrier concentration n_i and intrinsic Fermi level E... 2
- 3 (a) An intrinsic S_i sample is doped with donors from one side such that donor density $N_d = N_o e^{-\alpha x}$. Find an expression for the electric field E(n) at equillibrium over the range for which $N_d >> n_i$, n_i is intrinsic carrier concentration.
 - (b) Show that diffusion current is proportional to the spatial derivative of the electron density.
 - (c) A sample of S_i is doped with 10^{17} phosphorus atoms/cm³. What would you expect to measure for its resistivity? What Hall voltage would you expect in a sample 100 μ m thick if I = 1 mA and $B_2 = 10^{-5}$ Wb/cm².

$$(\mu_n = 700 \text{ cm}^2/\text{V} - \text{s})$$

- 4. (a) Discuss the two important junction breakdown mechanisms:
 - (b) The contact potential cannot be measured by placing a voltmeter across the p-n junction. Why?
 - (c) Derive equation for built in potential and the junction capacitance of a linear graded junction.
- 5. (a) Starting from the continuity equation, derive the expression for emitter terminal current for a bipolar junction transistor in active mode of operation.

		models. What is function of the gate?	3
6.	(a)	Explain I-V characteristics of UJT. Explain its use a	ıs
		relaxation oscillator.	3
	(b)	Derive an expression for the drain current of JFET. Fin	d
		expression for its channel conductance in linear region	n.
			4
7.	(a)	What are ohmic and rectifying contancts?	2
	(b)	Draw energy band diagram of a Metal Oxid	e
		Semicanductor (MOS) diode. Describe accumulation	n
		depletion and inversion cases for ideal MOS diode.	3
	(c)	Explain the working of enhancement and depletio	n
		mode MOSFETs.	2

(b) Explain the working of a SCR using two transistor