This question paper contains 3 printed pages.]	This
Your Roll No	
398 A	1398
B.Sc. (Hons.)/I	
ELECTRONICS SCIENCE—Paper 1.7 (VII)	
(Mathematical Physics-II)	
Time: 3 Hours Maximum Marks: 38	Time
(Write your Roll No. on the top immediately	
on receipt of this question paper.)	
Attempt five questions in all.	
Question one is compulsory.	
1. (a) Test the series $\sum_{n=1}^{\infty} \frac{2^n n }{n^n}$ for convergence or	1.
divergence. 2	
(b) Is the set of functions e^x , e^{-x} , e^{-2x} linearly dependent?	(
2	
(c) State Dirichlet's theorem. 2	
(d) Write down Parseval's identity for the Fourier	
series. 2	
(e) Prove that the Fourier transform of the convolution	
of $f(x)$ and $g(x)$ is the product of their Fourier	
transform. 2	
2. (a) Obtain the Fourier expansion of a function $f(x)$ in	2
the interval $(-l, +l)$	
[P.T.O.	
[r.1.O.	

1398 (2)

(b) Obtain the Fourier series expansion for f(x) = x $\sin x$ in the interval $-\pi < x < \pi$ and hence deduce that: $\frac{\pi}{4} = \frac{1}{2} + \frac{1}{13} - \frac{1}{35} + \dots$

3. (a) Find the Laplace transform of Half wave rectifier function:

$$f(t) = \begin{cases} \sin \omega t & 0 < t < \pi/\omega \\ 0 & \pi/\omega < t < 2\pi/\omega \end{cases}$$

(b) An inductor of 2 henrys, a resistor of 16 ohms and a capacitor of 0.02 farads are connected in series with an e.m.f. of E volts. At t = 0 the charge on the capacitor and current in the circuit are zero. Find the charge and current at any time t > 0 if (a) E = 300 volts, (b) E = 100 sin 3t volts by using Laplace Transform.

4. (a) Find the inverse Laplace transform of $\frac{S}{(S^2 + a^2)^2}$

(b) Find the Fourier transform of the slit function of f(x) defined as

$$f(x) = \begin{cases} \frac{1}{2} & : |x| \le \epsilon \\ 0 & : |x| > \epsilon \end{cases}$$

(3) 1398

determine the limit of the transform as $\in \to 0$. Plot the function and its transform.

- 5. (a) Using Fourier Integral show that: $e^{-ax} = \frac{2a}{\pi} \int_0^\infty \frac{\cos \lambda x}{\lambda^2 + a^2} dx, a > 0, x \ge 0$
 - (b) Show that the series $x^{2}(\log 2)^{q} + x^{3}(\log 3)^{q} + x^{4}(\log 4)^{q} + \dots$ is convergent when x < 1 and divergent when $x \ge 1$, whatever the value of q.
- 6. Find the general solution of the following differential equations:

(a)
$$Y'' - 2Y' + 3Y = \cos x + x^2$$

(b)
$$Y'' - 5Y' + 6Y = x \sin 3x + e^x \sin x$$

- 7. (a) Discuss the extrema of the function: 3 $x^3 + y^3 63(x + y) + 12xy$
 - (b) Show that the maximum and minimum values of $x^2 + y^2$ where $ax^2 + 2hxy + by^2 = 1$ are given by the roots of the quadratic equation:

$$\left[a - \frac{1}{r^2}\right] \left[b - \frac{1}{r^2}\right] = h^2$$