	ŗ	
This	question paper contains 2 printed pages.]	
	Your Roll No	
1394		A
	B.Sc. (Hons.)/I	
	ELECTRONIC SCIENCE—Paper 1.3 (III)	
	(Thermal Physcis)	
Time	: 3 Hours Maximum Marks : 3	38
	(Write your Roll No. on the top immediately	
	on receipt of this question paper.)	
	Attempt five questions in all, including	
	Q. No. 1 which is compulsory.	
1. (a)	Show that change in entropy in reversible adiabat	ic
	process is zero. 2 ×	5
(b)	Obtain an expression for Adiabatic Lapse Rate.	
(c)	Find the efficiency of a Carnot's engine working	ıg
	between steam point and ice point.	
(d)	Using first law of Thermodynamics prove that:	
	$C_{p} - C_{v} = R$	
(e)	Using law of equipartition of energy calcula	te
	$r\begin{pmatrix} C_p \\ C_v \end{pmatrix}$ for mono-atomic and diatomic gases.	
2. (a)	Distinguish between first order and second order phase	se
	transition with examples.	3
(b)	Obtain the Ehrenfert's equation :	4
	$\frac{d\mathbf{P}}{d\mathbf{T}} = \left(\frac{\alpha_2 - \alpha_1}{\mathbf{K}_2 - \mathbf{K}_1}\right)$	

Where symbols have their usual meanings.

[P.T.O.

1394 (2

I J	74	(2)	
3	(a)	Deduce Maxwell's distribution law of molecular speed	s
		in a gas.	5
	(b)	Show that the average speed of molecules in a gas i	s
		given by : $\overline{V} = \sqrt{\frac{8 \text{ KT}}{m \pi}}$	2
4.	(a)	Using Maxwell's thermodynamical relations prove that	:
		$C_{p} - C_{v} = TE\alpha^{2}V$ 39	2
	(b)	Show that	2
		$\frac{\beta_{\rm S}}{\beta_{\rm V}} = \frac{r}{r-1}$	
		Where symbols have their usual meanings.	
5.	(a)	State the assumptions made by Planck and hence deriv	e
		the radiation formula.	4
	(b)	Obtain the limiting cases for short and long wave length	s
		in Planck's radiation law.	3
6.	(a)	Distinguish between Maxwell-Boltzmann, Fermi-Dira	c
		and Bose-Einstein statistics.	3
	(b)	Dedice the expression for distribution function in cas	e
		of a system of particles obeying Bose-Einstein statistics	;_
			4
7.		Write short notes on any two of the following:	7
		(a) Mean free path	
		(b) Fermi energy at absolute zero	
		(c) Transport phenomena 300	0