Į i nis	ques	non paper contains 4 printed pages.]	
		Your Roll No	
6014		B.Sc. (Hons.)/I	}
		· ,	
		LECTRONIC SCIENCE—Paper 1.4 (IV)	
	(Semiconductor and Solid State Devices)	
Time	: 3 /	Hours Maximum Marks : 3	8
(Write	your R	Roll No. on the top immediately on receipt of this question paper.	j
		Attempt any Five questions.	
		Question No. 1 is compulsory.	
1.	(a)	What are the Frenkel and Schottky defects in	'n
		a crystal ?	2
	(b)	Explain the difference between direct and indirect	ct
		semiconductors with the help of E-R diagram.	2
	(c)	Calculate the density of states per unit volume with	:h
		energies between 0 and 1 eV.	2
	(<i>d</i>)	Point out one constructional and one operations	al
		difference between FET and UJT.	2
	(e)	How much is the wavelength of radiation emitte	d
		by recombination of electron-hole pair in GaAs whos	se
		band gap is 1.42 eV ?	

6014 (2)

2. (a) Prove that the intrinsic carrier density is given by

$$n_i = \sqrt{N_C N_V} \exp\left(-\frac{Eg}{2 KT}\right)$$

where symbols have their usual meanings. 4

- (b) Draw schematic energy diagrams for density of states
 N(E) versus fermi dirac distribution function F(E)
 of n-type semiconductors and explain.
- (c) Determine the probability that an energy level

 3 KT above the Fermi level is occupied by
 an electron.
- (a) Explain the phenomena of diffusion of change carriers
 in a semiconductor and show that electron current
 density is given by the following expression: 4

$$J_n = q D_n \frac{dn}{dx}.$$

- (b) A n-type semiconductor has Hall coefficient 160 cm³/coulomb. If its resistivity is 0.16 ohm-cm, determine the electron mobility for this semiconductor.
- (c) In an n-type GaAs semiconductor at T = 300 K, the electron concentration varies linearly from

1	×	108	cm ⁻³	to	7	× l	017	cm ⁻³	over	a	distance
oí	f 0 .	.10	cm. Ca	ılcu	late	the	e di	ffusion	ı curr	eni	t density
if	th	e di	ffusion	1 00	eff	icie	nt	is 225	cm ² /	s.	1

- (a) Show that the transition capacitance of a linearly graded junction varies inversely as the cube root of the junction voltage.
 - (b) Calculate the built-in-potential for silicon per junction with $N_A = 10^{18}/\text{cm}^3$ and $N_D = 10^{15}/\text{cm}^3$ at room temperature (300 K). Intrinsic carrier concentration at 300 K for silicon is $1.5 \times 10^{10}/\text{cm}^3$.
- (a) Explain the working of a Bipolar transistor in active mode operation. Show that the collector current I_C is directly proportional to the minority carriers charge stored in the base.
 - (b) A npn transistor with $\alpha = 0.98$ is operated in the common base configuration. If the emitter current is 3 mA and reverse saturation current is 10 μ A. What are the base current and collector current?

6014 (4)

6.	<i>(a)</i>	Explain the accumulation, depletion and inversion	nd inversion	
		cases for an Ideal MOS diode.	3	

- (b) Explain the construction and working of metal oxide semiconductor field effect transistor (MOSFET) what is the difference between depletion and enhancement mode MOSFET.
- (a) Draw and explain the output characteristics of a
 JFET. Define transconductance (gm) and channel conductance (gd).
 - (b) Determine the pinch off voltage (V_p) for n-channel silicon JFET with a channel width of 5.6 × 10⁻⁴ cm and donor concentration of 10¹⁵ cm⁻³. Given
 ∈ s = 12 × 8.854 × 10⁻¹⁴ F/cm.