[This question paper contains 4 printed pages.]

1006 Your Roll No.

B.Sc. (Hons.) / I

 \mathbf{C}

ELECTRONICS - Paper 1.6 (VI)

(Mathematical Physics - I)

Time: 3 Hours Maximum Marks: 38

(Write your Roll No. on the top immediately on receipt of this question paper.)

Attempt Five questions.

Question No. 1 is compulsory.

Attempt at least one question from each Section.

- 1. Compulsory question. (5×2=10)
 - (a) Find an equation for the plane determined by the points $P_1(2,-1,1)$, $P_2(3,2,-1)$, $P_3(-1,3,2)$.
 - (b) Find grad of 1/|r| where, $|r| = \sqrt{(x^2 + y^2 + z^2)}$.
 - (c) Prove that the eigenvalues of a Hermitian matrix are real.
 - (d) Show divergence of a curl of a vector is zero.

P.T.O.

(e) Define Alternating tensor. Show that $\delta_{ij} \epsilon_{ijk} = 0$.

SECTION A

2. (a) State Gauss Divergence theorem. Evaluate

where $\mathbf{F} = 4xz \,\mathbf{i} - y^2 \,\mathbf{j} + yz \,\mathbf{k}$ and S is the surface of the cube bounded by x = 0, x = 1, y = 0, y = 1, z = 0 and z = 1.

(b) If $\vec{r} = x\hat{i} + y\hat{j} + z\hat{k}$ and \vec{a} , \vec{b} are constant vectors then show that

$$\vec{\nabla} \times \left[\vec{r} \times \vec{a} \right] \times \vec{b} = \vec{b} \times \vec{a}$$
 (3)

- 3. (a) Find the unit vectors $\hat{\mathbf{e}}_{\rho}$, $\hat{\mathbf{e}}_{\phi}$, and $\hat{\mathbf{e}}_{z}$ for an orthogonal cylindrical co-ordinate system. (4)
 - (b) Prove that the spherical coordinate system is orthogonal. (3)

SECTION B

- 4. (a) Define the following with an example each:
 - (i) Isotropic tensor

(b) Establish the following using tensor notation:

(i)
$$A \times (B \times C) = (A.C)B - (A.B)C$$

(ii)
$$\operatorname{curl}\left(\phi \stackrel{?}{F}\right) = \operatorname{grad} \phi \times \stackrel{?}{F} + \phi \operatorname{curl} \stackrel{?}{F}$$
 (4)

5. (a) Derive Moment of Inertia tensor and show that it is an isotropic tensor of rank two. (7)

SECTION C

- 6. (a) Prove that the trace of a matrix remains invariant under similarity transformation. (2)
 - (b) For which value of k will the vector $\mathbf{u} = (1, -2, \mathbf{k})$ in \mathbf{R}^3 be a linear combination of vectors $\mathbf{v} = (3, 0, -2)$ and $\mathbf{w} = (2, -1, -5)$.
 - (c) Find the matrix representation for T
 - (i) standard basis

(ii) basis {[1, 1], [1, -1]} when
$$T\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} x + y \\ x - y \end{bmatrix}$$
(3)

P.T.O.

1006 4

- 7. (a) Prove that the eigen values A⁻¹ are the reciprocal of eigen values of a non singular matrix A. (3)
 - (b) Reduce the following coupled differential equation into eigen value problem and solve:

$$\frac{dy_1}{dt} = y_1 + 2y_2 - 3y_3$$

$$\frac{dy_2}{dt} = 2y_1 + 4y_2 - 6y_3$$

$$\frac{dy_3}{dt} = -y_1 - 2y_2 + 3y_3$$

Given that:
$$y_1(0) = 0$$
, $y_2(0) = 1$, $y_3(0) = 1$. (4)