[This question paper contains 4 printed pages.]

1007 Your Roll No.

B.Sc. (Hons.) / I

ELECTRONICS SCIENCE - Paper 1.7 (VII)

(Mathematical Physics - II)

Time: 3 Hours Maximum Marks: 38

(Write your Roll No. on the top immediately on receipt of this question paper.)

Attempt five questions in all. Question one is compulsory.

- 1. Do any five of the following: (2×5)
 - (a) Expand $f(x) = x_1$, for $-\pi \le x \le \pi$ as Fourier series.
 - (b) State the Dirichlet conditions.
 - (c) Find out whether e^x and e^{2x} are linearly dependent on each other.
 - (d) Find $L^{-1}\left[\frac{1}{s^3+4s}\right]$.
 - (e) State and prove the convolution theorem for Fourier transform.

- (f) Test for the convergence of series $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}$.
- 2. (a) Express $f(x) = \pi x$, $0 < x < \pi$ as Fourier sine series.
 - (b) Express $f(x) = x^2$ in the interval $-\pi < x < \pi$ as Fourier series and then evaluate

$$1 + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} \dots {3+4}$$

- 3. (a) State and prove Fourier Integral theorem.
 - (b) Write down the Fourier's cosine integral. Using this evaluate the following integral

$$\int_{0}^{\infty} \frac{\cos \omega x}{\omega^{2} + k^{2}} d\omega = \frac{\pi e^{-kx}}{2k}$$
 (3+4)

- 4. (a) Find the transforms of
 - (i) $L^{-1} \left[\log \frac{(s^2 1)}{s^2} \right]$
 - (ii) L[sin 2t sin 3t]

(b) If f(t) is the periodic function with period T, then

prove
$$L[f(t)] = \frac{1}{1 - e^{-sT}} \int_{0}^{T} e^{-sT} f(t) dt$$
. (4+3)

5. Solve following differential equations:

(a)
$$y'' - 5y' + 6y = e^x \cos 2x$$

(b) Use the transformation $x = e^z$ and reduce the following equation:

$$x^3 y''' + 3x^2 y'' + y' = x^2 \log x$$

to one with constant co-efficients and obtain its complete solution. (3+4)

6. (a) Find Fourier transform of

$$f(x) = \begin{cases} 1 - x^2 & \text{if } |x| \le 1 \\ 0 & \text{if } |x| > 1 \end{cases}$$

(b) Find the maxima and minima for

$$f(x, y) = x^3 + y^3 - 63(x + y) + 12xy$$
 (4+3)

7. (a) Check the convergence status of following series

$$\frac{1}{1 \times 2 \times 3} + \frac{3}{2 \times 3 \times 4} + \frac{5}{3 \times 4 \times 5} + \dots$$

P.T.O.

(b) State the D'Alembert's Ratio test and use it to check the convergence of following series

$$\frac{1}{5} + \frac{2!}{5^2} + \frac{3!}{5^3} + \frac{4!}{5^4} + \dots$$
 (3+4)