This question paper contains 7 printed pages]

,			
)4		D	
ork Analysis (ELHT-103	3)		
(Hons.) Electronics			
ан сайтаан ал			
)4 ork Analysis (ELHT-103 (Hons.) Electronics)4 ork Analysis (ELHT-103) (Hons.) Electronics)4 D ork Analysis (ELHT-103) (Hons.) Electronics

Duration : 3 Hours

1.

Maximum Marks: 75

(Write your Roll No. on the top immediately on receipt of this question paper.)

Attempt Five questions in all.

Question No. 1 is compulsory.

Use of non-programmable scientific calculator is permitted.

- (a) An equivalent circuit has the Norton current 12 ∠0° A and the Thevenin impedance is 8-6j Ω. What is the maximum average power that can be transferred to the load ?
- (b) Determine the r.m.s. value of the voltage for the periodic waveform shown in Fig. 1a below :

P.T.O.

- (c) In a low pass RC filter with cut-off frequency 1 kHz the capacitor C is replaced by 4C, and now the output is taken across the resistance. What is the cut-off frequency of this filter? Sketch the frequency response of this system with capacitance of 4C.
- (d) Draw the Dual Circuit for the given circuit of Fig. 1b.

Fig. 1b

- (e) Define the hybrid parameters for a two-port network. Identify each of these parameters specifically (by name also). $3 \times 5 = 15$
- (a) Loop currents are shown in the network of Fig. 2a. Write the matrix equation and solve for the three currents.
 8

Fig. 2a

(b) In the network shown in Fig. 3a, find the current in the 10 Ω resistor.

(a) State and prove the Thevenin's theorem.

(b) For the bridge network in Fig. 3, find R_{ab} and *i*.

P.T.O.

7

7

8

4.

(a) The switch in the circuit shown in Fig. 4a is closed at t = 0, at which moment the capacitor has charge $Q_0 = 500 \ \mu$ C, with the polarity indicated. Obtain *i* and *q*, for t > 0, and sketch the graph of *q*. 7

(b) A series RLC circuit with R = 200 Ω , L = 0.10 H, and C = 1 μ F, has an initial charge on the capacitor of Q₀ = 2.67 × 10⁻³ C. A switch is closed at t = 0, allowing the capacitor to discharge. Obtain the current transient. (See Fig. 4b). 8

(a) Find the input impedance of the circuit in Fig. 5a. Assume that the circuit operates

at $\omega = 50$ rad/s.

5.

Fig. 5a

(b) Replace the active network in Fig. 5b at terminal *ab* with a Norton equivalent.

P.T.O. .

7

8

(6)

6444

Fig. 6a

(b) Obtain the voltage transfer function $H_{\nu}(\omega)$ under no load condition for the open circuit shown in Fig. 6b. At what frequency, in hertz, does $|H_{\nu}(\omega)| = \frac{1}{\sqrt{2}}$ if $C_2 = 10$ nF?

Fig. 6b

7. (a) Determine the Z parameters for the two-port network shown in Fig. 7a shown below.

(7)

- Fig. 7a
- (b) Identify the condition for a network to be reciprocal in terms of its Z parameters. Given the Y-parameters of a two-port network identify its Z-parameters.

 $\begin{pmatrix} 6 & 4 \\ 4 & 7 \end{pmatrix} \Omega^{-1}$

6444

200