Sl. No. of Ques. Paper: 1779

GC-3

Unique Paper Code

: 32511104

Name of Paper

: Core Paper - II : Mathematics Foundation for Electronics

Name of Course

: B.Sc. (Hons.) Electronics under CBCS

Semester

: I

Duration:

: 3 hours

Maximum Marks

: 75

(Write your Roll No. on the top immediately on receipt of this question paper.)

Attempt five questions in all. Q. No. 1 is compulsory.

All questions carry equal marks.

Use of non-programmable scientific calculator is allowed.

1. (a) Solve the differential equation:

$$(y + 2\sqrt{x^2 + y^2})dx - x dy = 0, y(1) = 0$$

(b) Show that AB = AC does not necessarily imply that B = C

$$A = \begin{bmatrix} 1 & -3 & 2 \\ 2 & 1 & -3 \\ 4 & -3 & -1 \end{bmatrix}$$

$$B = \begin{bmatrix} 1 & 4 & 1 & 0 \\ 2 & 1 & 1 & 1 \\ 1 & -2 & 1 & 2 \end{bmatrix}$$

$$C = \begin{bmatrix} 2 & 1 & -1 & -2 \\ 3 & -2 & -1 & -1 \\ 2 & -5 & -1 & 0 \end{bmatrix}$$

- (c) Show that gamma function is not defined for zero and negative integers.
- (d)Show that function

$$u = \cos x \cdot \cosh y$$

is harmonic and find its harmonic conjugate.

3

3

(e) Test for convergence of following series: 
$$\sum_{n=1}^{\infty} \frac{1}{n!}$$

. 3

$$(D^2 + 2)y = x^2 e^{3x} + e^x \cos 2x$$
 6

(b) Find a power series solution in power of x of the following differential equation

$$(1-x^2)y'' - 2xy' + 2y = 0$$

(c) Find only the indicial equation for the following differential equation using

Frobenius method around x = 0.

3

$$x(1+x)y'' + (x+5)y' - 4y = 0$$

3. (a) Find eigenvalues and eigenvectors of

(b) Verify Cayley - Hamilton theorem for matrix

 $A = \begin{bmatrix} 1 & 2 \\ 2 & -1 \end{bmatrix}$ 

Find  $A^{-1}$ . Determine  $A^{8}$ .

5.

Solve the system of given equations using LU decomposition method.

 $3x_1 - 6x_2 - 3x_3 = -3$ 

 $2x_1 + 0x_2 + 6x_3 = -22$ 

 $-4x_1 + 7x_2 + 4x_3 = 3$ 

6

4. (a) Show that

 $A = \begin{bmatrix} i & 0 & 0 \\ 0 & 0 & i \\ 0 & i & 0 \end{bmatrix}$ 

is skew-Hermitian and also unitary.

(b) Prove that the generating function for Bessel's functions of integral order is  $e^{\frac{1}{2}x(t-\frac{1}{t})}$ 

8

(c) If

$$A = \begin{bmatrix} 0 & 1+2i \\ -1+2i & 0 \end{bmatrix}$$

show that  $(I - A)(I + A)^{-1}$  is a unitary matrix.

3

5

5. (a) Find the residues of following function

 $f(z) = \frac{z^2 - 2z}{(z+1)^2(z^2+4)}$ 

(b) Find Laurent series about the singularity indicated with the function

 $f(z) = \frac{e^{2z}}{(z-1)^3}$ ; z = 13

(c) Evaluate

$$f(z) = \frac{1}{2\pi i} \oint_C \frac{e^{zt}}{z^2(z^2+2z+2)} dz$$

around the circle c with equation |z| = 3.

7

6. (a) Use integral test for checking the convergence of following series

i) 
$$1 + \frac{1}{3} + \frac{1}{5} + \dots + \frac{1}{2n-1} + \dots$$
  
ii)  $\sin \pi + \frac{1}{4} \sin \frac{\pi}{2} + \frac{1}{9} \sin \frac{\pi}{3} + \dots$   $3 + 4$ 

(b) Check the convergence using ratio test of the series whose  $n^{th}$  term is

$$\frac{(n+3)!}{3!n!3^n}$$

(b) Use Cauchy's  $n^{th}$  root test to test for convergence of following series

$$1 + \frac{x}{2} + \frac{x^2}{3^2} + \frac{x^3}{4^3} + \cdots ; x > 0$$

7. (a) Evaluate  $\oint_C \frac{dz}{z-a}$ 

where c is simple closed curve and the point z = a lies

- i) Outside c
- ii) Inside c

2+5

(b) Determine for what value of x, the following series is convergent

$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1} x^{2n-1}}{(2n-1)!}$$

(c) Test for convergence of following alternating series

$$1 - \frac{x}{1^2} + \frac{x^2}{2^2} - \frac{x^3}{3^2} + \frac{x^4}{4^2} - \cdots$$