1389

Your Roll No.

B.Sc. (Hons.) Electronics / II Sem.

Paper - MAHT - 204

Mathematics-I

(Admissions of 2010 and onwards)

Time: 3 Hours Maximum Marks: 75

(Write your Roll No. on the top immediately on receipt of this question paper.)

Attempt any two parts from each question.

All questions carry equal marks.

- 1. (a) Discuss the convergence of the sequence $\left\{\frac{\sin h \, n}{\cos h \, n}\right\}.$
 - (b) Test the convergence of the series $\sum ne^{-n^2}$. 4½
 - (c) Test for the absolute or conditional convergence of the series $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{\sqrt{n}}$.
- 2. (a) Without solving, show that the equation $x^4 + 2x^3 2 = 0$ has at the most one real root between 0 and 1.

[P.T.O.

- (b) Separate the intervals in which the polynomial $f(x) = (4 x^2)^2$ is increasing or decreasing. 4½
- (c) For every $x \ge 0$, show that $1 + x + \frac{x^2}{2} \le l^x \le 1 + x + \frac{x^2}{2} l^x$. 4½

3. (a) If
$$f(x, y) = \frac{x^2 - y^2}{x^2 + y^2}$$
, $(x, y) \neq (0, 0)$
= 0, $(x, y) = (0, 0)$,

then show that f is discontinuous at the origin. $4\frac{1}{2}$

- (b) The altitude of a right circular cone is 15 cm and is increasing at 0.2 cm/sec. The radius of the base is 10 cm and is decreasing at 0.3 cm/sec. How fast is the volume changing?
- (c) If $u = \sin^{-1}\left(\frac{x^2 + y^2}{x + y}\right)$, then show that $u_x + yu_y = \tan u$.
- 4. (a) Expand $f(x, y) = 21 + x 20y + 4x^2 + xy + 6y^2$ in Taylor series of maximum order about the point (-1, 2).
 - (b) Find the extreme value of $x^2 + y^2 + z^2$ subject to the condition $xyz = a^3$.

1389

- (c) Trace the curve $y^2(a+x) = x^2(a-x)$. 4½
- 5. (a) Find the perimeter of the curve $r = a(\cos \theta + \sin \theta); 0 \le \theta \le \pi.$ 4½
 - (b) Find the volume of the solid of revolution generated by revolving the plané area bounded by the given curves $y = x^2$, y = 2x about the x-axis.

41/2

- (c) Find the area of the surface of revolution of the solid generated by revolving the curve whose parametric equations are $x = a\cos^3 t$, $y = a\sin^3 t$ about the x-axis.
- 6. (a) Evaluate the double integral $\iint_R \ell^{x^2} dx dy$, where the region R is given by $R: 2y \le x \le 2$ and $0 \le y \le 1$.

(b) Evaluate
$$\iint_{0}^{1} \int_{0}^{x+y} (x+y+z) dz dy dx.$$
 5

(c) Change the variables, if necessary to evaluate $\iint_{R} \ell^{2(x^2+y^2)} dxdy$, where R is bounded by R

R:
$$x^2 + y^2 = 4$$
, $x^2 + y^2 = 25$, $y \le x$, $x \ge 0$, $y \ge 0$. 5

1389

- 7. (a) Find the directional derivative of the scalar function $\phi(x, y, z) = x^2y y^2z xyz$ at (1, -1, 0) in the direction $\hat{i} \hat{j} + 2\hat{k}$.
 - (b) Find the Jacobian of x, y, z with respect to cylindrical coordinates.
 - (c) Let f(x, y, z) be a solution of the Laplace equation $\nabla^2 f = 0$. Then, show that ∇f is a vector which is both irrotational and solenoidal.
- 8. (a) Find the work done in moving a particle in the force field $\vec{F} = 3x^2\hat{i} + (2xz y)\hat{j} + z\hat{k}$ along the space curve $C: x = 2t^2, y = t, z = 4t^2 t, 0 \le t \le 1.5$
 - (b) Using Green's theorem, or otherwise, evaluate the integral $\oint_C \overrightarrow{F} \cdot d\overrightarrow{r}$ counter-clockwise around the boundary C of the region R, where $\overrightarrow{F} = \left[x^2 \ell^y, y^2 \ell^x\right]$, C is the rectangle with vertices (0, 0), (2, 0), (2, 3), (0, 3).
 - (c) Using Divergence Theorem, or otherwise, evaluate $\iint_{S} (7x\hat{i} z\hat{k}) \cdot \hat{n} dA$ over the sphere $S: x^2 + y^2 + z^2 = 4$.

1389 4 900