This question paper contains 4+2 printed pages]

Roll No.	i					•		
	1	i			i	į	i	1

S. No. of Question Paper: 6470

Unique Paper Code

: 235271

D

Name of the Paper

: Mathematics—I [MAHT-204]

Name of the Course

: B.Sc. (Hons.) Electronics

(Admissions of 2010 and onwards)

Semester

· 11

Duration: 3 Hours

Maximum Marks: 75

(Write your Roll No. on the top immediately on receipt of this question paper.)

'There are 7 questions in this question paper.

Question No. 1 is compulsory.

Attempt any four questions from Question No. 2 to Question No. 7.

(a) State ratio test for a positive term series and hence show that the series :

$$\sum \frac{n}{2^n}$$

is convergent.

(b) Find the total differential coefficient of x^2y with respect to 'x' when x and y are connected by:

$$x^2 + xy + y^2 = 1.$$

(c) Find the perimeter of the curve:

$$r = a(\cos \theta + \sin \theta); 0 \le \theta \le \pi.$$

 3×5

(d) Evaluate:

$$\int_{0}^{1} \int_{0}^{x+y} \int_{0}^{x+y} (x+y+z) dz dy dx$$

(e) If

$$\overline{A}(u) = u\hat{i} - u^2\hat{j} + (u-1)\hat{k}$$
 and $\overline{B}(u) = 2u^2\hat{i} + 6u\hat{k}$,

then evaluate:

$$\int_{0}^{2} \overline{\mathbf{A}} \times \overline{\mathbf{B}} \ du$$

2. (a) If $\langle a_n \rangle$ is a sequence where $a_1 = 1$ and

$$a_{n+1} \,=\, \sqrt{2+a_n} \ \forall \ n \geq 1,$$

show that the sequence $< a_n >$ is monotonically increasing and bounded. What is $\lim_{n \to \infty} a_n$?

(b) Show that:

$$x - \frac{x^2}{2} < \log(1+x) < x - \frac{x^2}{2(1+x)} \ \forall \ x > 0$$
.

(c) State Leibnitz test for the alternating series:

$$u_1 - u_2 + u_3 - u_4 + \dots (u_n > 0, \forall n)$$

Show that the series:

$$1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots$$

is conditionally convergent.

3. *(a)* Expand:

$$f(x, y) = e^y \log (1 + x)$$

in powers of x and y upto third degree terms.

(b) Find the shortest distance from origin to the surface:

$$xyz^2 = 2.$$

(c) Trace the curve:

$$y = \frac{x^2 - 3x}{x - 1}.$$

4. (a) Calculate the area of the surface of revolution generated by revolving the cardioid:

$$x = 2\cos \theta - \cos 2\theta;$$

$$y = 2\sin \theta - \sin 2\theta;$$

about x-axis.

4) 6470

(b) Find the mass and centroid of the tetrahedron bounded by the coordinate planes and the plane:

$$\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1.$$

(c) Using spherical polar coordinates, calculate:

3×5

$$\int_{0}^{1} \int_{0}^{\sqrt{1-x^2}} \int_{0}^{\sqrt{1-x^2-y^2}} \frac{dxdydz}{\sqrt{1-x^2-y^2-z^2}}.$$

5. (a) Find the directional derivative of ∇u at the point (4, 4, 2) in the direction of the corresponding outer normal of the sphere:

$$x^2 + y^2 + z^2 = 36$$

where $\vec{u} = x^4 \hat{i} + y^4 \hat{j} + z^4 \hat{k}$.

(b) Verify Stokes theorem for:

$$\bar{\mathbf{A}} = y^2 \hat{\mathbf{i}} + xy \hat{\mathbf{j}} - xz \hat{\mathbf{k}}$$

over S, where S is the hemisphere:

$$x^2 + y^2 + z^2 = a^2; z \ge 0.$$

(c) If f(r) is differentiable and

$$r = \sqrt{x^2 + y^2 + z^2},$$

show that f(r) \overline{r} is irrotational.

6. (a) If

$$0 \le a < b < \left(\frac{\pi}{2}\right).$$

show that : ·

$$0 < \cos(a) - \cos(b) < b - a.$$

(b) Find the surface area of the plane:

$$x + 2y + 2z = 12$$

cut-off by x = 0, y = 0 and $x^2 + y^2 = 16$ in the first octant.

(c) Discuss the convergence of the series

$$\sum \frac{n}{\left(n^2+1\right)^2}.$$

using Cauchy's integral test.

 3×5

7. (\dot{a}) If

$$\sin^2 u = \frac{x^{\frac{1}{3}} + y^{\frac{1}{3}}}{x^{\frac{1}{2}} + y^{\frac{1}{2}}},$$

then show that:

$$x^{2}u_{xx} + 2xyu_{xy} + y^{2}u_{yy} = \frac{\tan u}{12} \left[\frac{13}{12} + \frac{\tan^{2} u}{12} \right].$$

P.T.O.

(b) Trace the curve:

$$r = a \cos 3\theta$$
.

(c) Evaluate:

$$\iint\limits_{\mathbf{R}} (x+y)^2 dxdy$$

where R is the region bounded by the parallelogram :

$$x+y=0;$$

$$x + y = 2;$$

$$3x - 2y = 0;$$

$$3x - 2y = 3.$$