1403

B.Sc. (Hons.) / II

A

ELECTRONIC SCIENCE – Paper 2.5 (XII) (Modern Optics and Opto-electronics)

Time: 3 Hours Maximum Marks: 38

(Write your Roll No. on the top immediately on receipt of this question paper.)

Attempt Five questions in all, including Question No. 1, which is compulsory.

- 1. Attempt any five of the following:
 - (a) State Fermat's principle. With its help prove law of Reflection.
 - (b) Explain the terms: Spatial coherence and Temporal coherence.
 - (c) Mention the two similarities and two dissimilarities between zone plate and a convex lens.
 - (d) Write conditions for obtaining circular fringes in Michelson's interferometer.

- (e) Name three main components of a Laser system.
- (f) What is the difference between step index and graded index fibre? $(2 \times 5 = 10)$

4

3

5

2

- 2. (a) What is meant by chromatic aberration and achromatic doublet? Deduce the condition for achromatic of two lenses separated by a distance 'd'.
 - (b) The object glass of a telescope is an achromat of focal length 90 cm. If the magnitude of dispersive power of lenses are 0.015 and 0.030, Calculate their focal length.
- 3. (a) What are Newton's ring and how are they formed? How would you employ this phenomenon for measuring the wavelength of light? (Give the necessary theory.) Why are Newton's rings circular?
 - (b) A thin planoconvex lens of focal length 1.8 m and of refractive index 1.6 is used to obtain Newton's ring. The wavelength of the light is 589 nm. Calculate the radius of 10th dark ring by
 - (i) reflection and
 - (ii) transmission

1403

4. (a) Show that in case of Fabry-Perot interferometer the intensity distribution is given by:

$$I = \frac{I_{\text{max}}}{\left[1 + \frac{4r^2}{(1 - r^2)}\sin^2\left(\frac{\delta}{2}\right)\right]}$$

where 'r' is the reflection coefficient for amplitude and ' δ ' is the phase factor.

- (b) White light is incident normally on a Fabry-Perot interferometer with a plate separation of 4×10^{-4} cm. Calculate the wavelengths for which there are interference maxima in the transmitted beam in the range 4000 Å to 5000 Å.
- 5. (a) What do you understand by double refraction? What are ordinary and extraordinary rays in an uniaxial crystal? Under what condition can we have single image of a point object when light falls normally on a uniaxial crystal.
 - (b) Describe the construction and working of a Nicol Prism. Discuss how it is used as a polarizer and an analyzer.

3

4

3

6.	(a)	**************************************	
0.	(a)	Write the laser rate equations for a three	
		level Laser system and find the threshold	
		pumping rate required for laser action.	
		What is the advantage of a four level Laser	
		over a three level Laser system?	4
	(b)	Discuss the working of a He - Ne Laser.	3
7.	(a)	What is a Hologram ? Explain the basic	
		principle involved in recording and	
		•	_
		reconstruction of Hologram.	3
	(b)	Define the numerical aperture of an optical	
		fibre and obtain an expression for it.	2
	(c)	If a step index optical fibre has core	
	•		
		refractive index 1.5 and cladding refractive	
		index of 1.47, compute:	2
		(i) The critical angle at core-cladding	
		interface.	
		(ii) The numerical aperture for the fibre.	
		1	