This question paper contains 4 printed pages.]

Your Roll No.

1404

B.Sc. (Hons.) / II

ELECTRONIC SCIENCE - Paper 2.6 (XIII)

(Mathematical Physics - III)

Time: 3 Hours

Maximum Marks : 38

(Write your Roll No. on the top immediately on receipt of this question paper.)

Attempt **five** questions in all, including Question No. 1, which is compulsory.

1. Do any five parts:

 2×5

- (a) Given a complex number z, interpret geometrically $ze^{i\alpha}$, where α is the real number.
- (b) Identify the singularity of $f(z) = \frac{1 e^z}{1 + e^z}$ at $z = \infty$.
- (c) Graph the region represented by 2 < |z 4 5i| < 4 on the Argand's diagram.

- (d) Evaluate: $\int_{0}^{\infty} 3^{-4z^2} dz$
- (e) Find all the singular points of $x \frac{d^2y}{dx^2} + 2\frac{dy}{dx} xy = 0 \text{ and determine their nature.}$
- (f) Show that the general solution of one dimensional wave equation can be represented by

$$y(x, t) = \frac{1}{2} [f_1(x + ct) + f_2(x - ct)]$$

where the symbols have usual meaning.

- 2. (a) Express the following in polar form and find the principal value of the function given by $\left(\frac{1-i}{1+i}\right)^{1/3}$.
 - (b) If $|z_1 + z_2| = |z_1 z_2|$, find the value of $\arg z_1 \arg z_2$.

2

3

- (c) Expand $\ln \left(\frac{1+z}{1-z} \right)$ in a Taylor's series around the origin.
- (a) Obtain the necessary and sufficient conditions for a function f(z) to be analytic.

1404

- (b) Discuss the differentiability and analyticity of $f(z) = x^n + iy^n$, n being a +ve integer. 2
- (c) Evaluate: $\oint_C (1+z) e^{\left(-\frac{1}{z}\right)} \sin\left(\frac{1}{z}\right) dz$ 2

Where C is a unit circle around the origin.

4. Using the calculus of residues, evaluate any two: $3\frac{1}{2} \times 2$

(a)
$$\int_{0}^{\pi} \frac{1+2\cos\theta}{5+4\cos\theta} d\theta$$

(b)
$$\int_{0}^{\infty} \frac{x \sin 2x}{x^2 + a^2} dx$$

(c)
$$\int_{0}^{\infty} \frac{\sin x}{x} dx$$

5. (a) Show that: $\beta(m, n) = \frac{\lceil m \rceil \lceil n \rceil}{\lceil (m+n) \rceil}$

Where m > 0, n > 0.

(b) Solve the differential equation $4x^2y'' + 4xy' + (x^2 - 1)y = 0$ by Frobenius method.

6. (a) Prove that
$$\sqrt{\frac{1}{2}} = \sqrt{\pi}$$

(b)
$$\int_{0}^{1} \frac{x^{m-1} + x^{n-1}}{(1+x)^{m+n}} dx = \beta(m, n)$$

(c) Prove that :
$$\int_{0}^{1} x J_{n}(\alpha x) J_{n}(\beta x) dx = 0, \alpha \neq \beta$$
Where α and β are the zeros of $J_{n}(x)$.

7. (a) Using Rodrigue's formula for Legendre's Polynomial $P_n(x) = \frac{1}{2^n n!} \frac{d^n}{dx^n} (x^2 - 1)^n$ 3

Show that $\int_{-\infty}^{\infty} [P_n(x)]^2 dx = \frac{2}{2^{n+1}}$

(b) Prove: 2
$${}^{n}p_{n}(x) = (2n-1)x \ p_{n-1}(x) - (n-1)p_{n-2}(x)$$
(c) Compute $J_{1/2}(x)$. 2

8. Set up the two dimensional wave equations for a vibrating circular membrane specifying the relevant boundary and initial conditions. Obtain its solution.

7