This question paper contains 5 printed pages.1

Your Roll No.

1405

A

B.Sc. (Hons.)/II ELECTRONIC SCIENCE - Paper 2, 7 (XIV) (Numerical Analysis)

Time: 3 Hours

Maximum Marks: 38

(Write your Roll No. on the top immediately on receipt of this question paper.)

Attempt five questions in all, including Question No. 1 which is compulsory.

Use of non-programmable scientific calculator is allowed.

- 1. Attempt any five of the following:
 - (a) Write FORTRAN expressions corresponding to each of the following:
 - (i) $\sqrt{5x^2 + 8y^2}$
 - (ii) $\sin(x-2y) + e^{xy} |x^2 y^2|$
 - (iii) $\log_a(a-b)^2$
 - (iv) $4x^2y 8xy 7yz^3$

1405 (2)

(b) Suppose the first four data on the data deck are as follows:

11, 22, 3, 3, 4, 4

5.5, 6.6, 77

88, 99, 2,34

5.67, 8.90, 123, 456

Find the value assigned to the variables if the following READ statements are executed:

- (i) READ(*,*)J, K, A, B, C READ(*,*)L, M, X
- (ii) READ (*,*) J, K, A

 READ (*,*) B, C, L, M

 READ (*,*) X, Y
- (c) (i) Suppose I = 222, J = 333, K = 444, L = 555 and M = 666 respectively. Determine the output if the following statement pair is executed.

WRITE (*, 60) I, J, K, L, M

60 FORMAT ('0', 18/19)

(3) 1405

(ii) Suppose 1D = 82637, M = 151 and A = 256.174

Determine the output if following statement pair is executed.

11 FORMAT ('1', 110, 16, F8.1)

- (d) Suppose a linear array A with N elements is in memory. Write a program segment which, interchanges A_1 and A_2 only if A_2 is larger than A_1 , interchanges A_3 and A_4 only if A_4 is larger than A_3 and so on. Assume N is even.
- (e) In each of the cases given below state for what values of x we get poor results in computation. Provide an alternate expression for each that can avoid the problem.
 - (i) $\cos(x)-1$

(ii)
$$(x-(x^2+a)^{1/2}/(x+(x^2-a)^{1/2})$$

(f) (i) Write an arithmetic IF statement equivalent to

(ii) Write a set of logical IF statement equivalent to

GO TO
$$(47, 33, 55, 77)$$
, K (5×2)

P.T.O.

1405 (4)

- (a) Write an FORTAN program which prints all the 3 digit prime numbers using nested DO loop. (3)
 - (b) Write a FUNCTION subprogram to evaluate a 2nd order determinant and use this it to evaluate third order determinant. (4)
- (a) Derive the Newton Raphson formula for finding the roots of algebraic and transcendental equation and also find the root of the equation

$$f(x) = x^3 - 3x + 2$$

using Newton Raphson Method.

(b) Find the root of the equation

$$2x = \cos x + 3$$

Correct to three decimal places by the iteration method. (3)

(4)

(4)

- (a) Show how, in Gauss-elimination method a system of linear equations can be reduced to an equivalent upper triangular system and subsequently can be solved by back substitution.
 - (b) Solve the following:

$$2x + y + 4z = 12$$

$$8x - 3y + 2z = 20$$

$$4x + 11y + z = 33$$

by Gauss Seidel iteration method.

(5) 1405

- (a) Derive the Newton's Divided difference interpolation formula.
 - (b) Find the cubic polynomial which takes following values:

$$y(0) = 1$$
, $y(1) = 0$, $y(2) = 1$ and $y(3) = 10$ (4)

Hence, or otherwise, obtain y(4).

- 6. (a) Derive the (i) Trapezoidal formula and (ii) Simpson's formula for numerical integration. (4)
 - (b) The velocity of a train which starts from rest is given by following table, the time being reckoned in minutes from the start and the speed in Km/hour.

t (minutes) 2 4 6 8 10 12 14 16 18 20 v (km/hour) 16 28.8 40 46.4 51.2 32.0 17.6 8 3.2 0 Estimate approximately the total distance run in twenty minutes.

- 7. (a) Derive the 2nd order Runge Kutta method for solving a 1st order differential equation. (3)
 - (b) Solve the following differential equation

$$\frac{dy}{dx} = 1 + y^2$$
; $y(0) = 0$

for x = 0.4 by taking h = 0.2 by 4th order Runge Kutta Method. (4)