[This question paper contains 6 printed pages.]

1014 Your Roll No.

B.Sc. (Hons.) / II

C

ELECTRONIC SCIENCE - Paper 2.7 (XIV)

(Numerical Analysis)

Time: 3 Hours Maximum Marks: 38

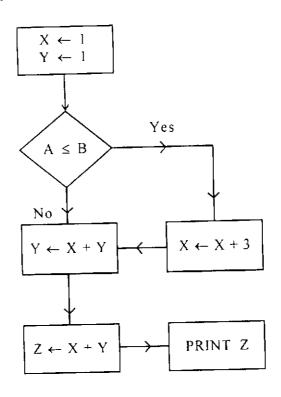
(Write your Roll No. on the top immediately on receipt of this question paper.)

Attempt any Five questions in all, including
Question No. 1 which is compulsory.

Use of non-programmable scientific calculator is allowed.

- 1. Attempt any five of the following:
 - (a) Write the FORTRAN expressions corresponding to each of the following:

(i)
$$\frac{e^{x-x}}{y_1 + \cos x}$$


(ii)
$$\frac{10^{-6}p}{q(d-r)} + \frac{1}{2}s^3$$

(iii)
$$(4x + 3)(3y + 2z - 4)$$

(iv)
$$\sqrt{|\sin(a-b)|}$$

- (b) Locate errors, if any in each I/O FORMAT pair
 - (i) Read (*, 10) A, B, J, K, L 10 FORMAT (3F8.1, 218)
 - (ii) WRITE (*, 20), A. B, N20 FORMAT (F10.2, 3X, 18, 5X, 16)
- (c) Find the value of K after each FORTRAN Program segment is executed
 - (i) K = 2 100 DO 200 I = 3, 8, 2 IF (I. EQ. 5) GO TO 200 K = K + 1 200 CONTINUE K = 5 * K
 - (ii) I = 1 J = 1 K = 115 IF (J - 10) 10. 25. 25 20 I = 1 + J J = J + 1GO TO 15 25 STOP END

(d) Translate the following flow chart into FORTRAN segment

- (e) Verify whether the following are valid or unacceptable expression. If not correct them.
 - (i) IF $(5 \le B)$ THEN B = 5
 - (ii) DIMENSION, A(30, 40), B(55),
 - (iii) IF(10, 20, 30) B
 - (iv) DATA, X, Y, Z | 4.0, 5, 6|

P.T.O.

- (f) Explain inherent error, truncation error and round off error in numerical computation. (2×5)
- 2. (a) Write a FORTRAN program to calculate and print the value of sin x, correct upto four decimal places using the series

$$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + - - - -$$
 (4)

- (b) Write a FORTRAN program to print all the odd numbers less then 500 and divisible by 9. (3)
- 3. (a) Write a FUNCTION subprogram for adding or subtracting to two m×n matrices. (3)
 - (b) Write a FORTRAN program to arrange a one dimensional array in ascending order and print the maximum and minimum of given n numbers.
 (4)
- 4. (a) Describe the Bisection method to solve the polynomial equation f(x) = 0. Write the algorithm or FORTRAN program for the same. (4)
 - (b) Obtain any one root of the following equation correct upto three decimal places using false position (Regula Falsi) Method.

$$x^3 - x^2 - 1 = 0 ag{3}$$

- (a) Write an algorithm or FORTRAN program for Gauss Elimination method to solve n simultaneous linear equations in n unknowns.
 - (b) Solve the following equations by Gauss-Siedal iterative method correct upto three significant digits

$$x + 2y + z = 8$$

 $2x - y + 2z = 6$
 $3x + 2y - z = 4$ (3)

6. (a) Given the following table of values

Estimate the value of f(0.6) using Lagrange's interpolation. What order of polynomial would you use in above interpolation. (3)

(b) Evaluate the integral using 1/3 Simpson's rule of integration with 10 points.

$$I = \int_{0}^{5} e^{-x^{2}} dx$$
 (4)

7. (a) Describe the 4th Order Runge Kutta method for solving a first order differential equation

$$\frac{dy}{dx} = f(x,y)$$
when $y(x_0) = y_0$ is given. (4)

(b) Solve the following differential equation using Euler's method

$$5\frac{\mathrm{dy}}{\mathrm{dx}} = 3x^3y$$

given y(0) = 1

for the interval $0 \le x \le 1$ (3)