{This	question paper contains 4 printed pages.]	
1009	Your Roll No	
	B.Sc. (Hons.) / II	C
	ELECTRONIC SCIENCE - Paper 2.2 (IX)	
	(Operational Amplifier and Analog Computation)	
Time	: 3 Hours Maximum Marks	: 38
	Write your Roll No. on the top immediately on receipt of this question paper.)	
	Attempt five questions in all, including Question No. 1 which is compulsory. Use of Scientific Calculator is allowed.	
1. ((a) If CMRR = 10^5 and differential gain $A_D = D$ Determine the common mode gain A_{cm} .	10 ⁵ . (2)
((b) If PSRR = 70db. What is the numerical value PSRR. Explain impact of low PSRR on cir performance.	
((c) Why is constant current bias circuit desired?	(2)
(d) Define the following terms:-	
	(i) input offset voltage	
	(ii) unity gain bandwidth	(2) `.O.

(2)

- (a) Give the AC analysis of Dual input balanced Output
 Differential Amplifier.
 (4)
 - (b) For given specifications evaluate the (i) operating point (ii) voltage gain and (iii) maximum peak-to-peak output voltage swing without clipping. (3)

Specifications:

$$\begin{split} R_{C} &= 2.2 \text{ K}\Omega, \ R_{E} = 4.7 \text{ K}\Omega, \ R_{IN1} = 50 \ \Omega, \\ R_{IN2} &= 50 \ \Omega, \\ V_{CC} &= \pm 12 \text{V}, \ V_{EE} = -12 \text{V}, \ \beta_{d.c.} = \beta_{a.c.} = 150, \\ \gamma_{BE} &= 0.7 \text{V}. \end{split}$$

3. For an operational Amplifier in voltage follower configuration following data is given:—

A = 500,000.
$$R_1 = 420\Omega$$
. $R_1 = 45 M\Omega (45 \times 10^6 \Omega)$
 $R_F = 4.7 K\Omega$. $R_0 = 50\Omega$, $V_{CC} = +15V$, $V_{EE} = -15V$
Maximum output voltage swing = $\pm 12V$,
Unity gain bandwidth (UGB) = 0.8 MHz

- (a) Draw the circuit diagram for the circuit? (2)
- (b) Evaluate the following for above mentioned circuit.
 - (i) Voltage gain with feedback (A_E)

- (ii) Input resistance with feedback (R_{iF})
- (iii) O/P resistance (R_{OF}) (3)
- (c) Discuss the impact of circuit on total output offset voltage. (2)
- (a) Design a triangular wave generator for 6 KHz signal with peak to peak voltage of 8V; Supply voltage = ±13V and saturation voltage = ±11V.
 - (b) Design a second order band pass filter for frequency range 1 KHz to 8 KHz. (3)
 - (c) What is the use of all-pass filter? (1)
- 5. (a) For a practical integrator with input signal as a sine-wave with peak-to-peak amplitude of GV at I KHz, draw the output voltage waveform if $R_1C_F = 0.2$ mS and $R_F = 10R_1$. Assume that $v_{C_F}(0) = 0V$. [Voltage across C_F is initially zero).
 - (b) Explain, with help of necessary circuit diagram and waveforms, the working of schmitt trigger.

(3)

6. (a) For a non-inverting amplifier with $R_1 = 2K\Omega$ and $R_F = 8 K\Omega$ and input offset voltage = 15 mV input P.T.O.

offset current = 40 nA and input bias current = 200 nA, evaluate total error voltage at the output for compensated and uncompensated circuit operation. (3)

- (b) Explain the working of IC 555 with the help of circuit diagram and necessary waveforms for a stable mode of operation. (4)
- (a) Why are differentiation circuit not used in design of analog computers for solving differential equations?
- (b) Design a circuit to generate the following integral:-

$$g(\omega) = \int_{a}^{\infty} \sin(\omega t) e^{-4qt} dt$$
 (5)