[This question paper contains 5 printed pages.]

6002

Your Roll No.

B.Sc. (H) ELECTRONICS / III Sem.

R

Paper - ELHT-302

Analog Electronics - I

(Admissions of 2010 and onwards)

Time: 3 Hours

Maximum Marks: 75

(Write your Roll No. on the top immediately on receipt of this question paper.)

Attempt Five questions in all including Q. No. 1 which is compulsory. Scientific calculator is allowed.

- (a) (i) Sketch the output V₀ and find the DC level of the output for the network given below.
 - (ii) Find the dc level of the output if an ideal diode is replaced by a Si diode.
 - (iii) Also find the dc level of the output if V_m is increased to 200V.

P.T.O.

- (b) Explain the effect of change in β on the characteristics curves of BJT.
- (c) Calculate the Efficiency of Class A Power Amplifier with resistive load.
- (d) How is phase shift introduced in Phase-Shift Oscillator. Why minimum 3 RC combinations are required for the same.
- (e) Prove that Negative feedback in amplifiers increases the Bandwidth. (5×3)
- (a) Derive an expression for the Ripple Factor for a Full Wave Rectifier.
 - (b) A 220V, 50 Hz ac is applied to the primary of 5:1 step up transformer with centre tapped secondary. This rectifier has a resistive load of $1K\Omega$. Calculate
 - (i) DC power to the load
 - (ii) Power Rating of Secondary
 - (iii) Ripple factor
 - (iv) PIV across each diode
 - (c) With the help of a circuit diagram, describe the operation of Positive Clamper.
 - (d) Give a block diagram of DC Power Supply.

 (6+4+3+2)

- 3. (a) What do you understand by Biasing? Explain how a Self Bias circuit would establish a stable Q point.
 - (b) The operating point is selected such that $I_C = 5 \text{ mA}$, $V_{CE} = 5 \text{ V}$, $R_C = 2 \text{K}\Omega$ and $V_{CC} = 20 \text{ V}$. Find R_1 , R_2 and R_E . Current through R_1 is 10 times the Base Current. Take $\beta = 50 \text{ \& V}_{BE} = 0.7 \text{V}$. (9+6)

- (a) Draw a circuit for Class B Push Pull Amplifier and show that all the even harmonics get cancelled.
 - (b) A Class B Push Pull amplifier uses $V_{CC} = 25V$, $R_L = 8\Omega$. If peak output voltage is 16V, what is the power drawn from the source.
 - (c) Draw the h-parameter equivalent circuit for RC coupled amplifier. Calculate its lower cut-off frequency by taking the coupling capacitor into consideration and all other capacitors as short circuited. (6+3+6)

- 5. (a) What are advantages of NEGATIVE feedback?
 Calculate the change in input and output impedance for a Current Series feedback circuit.
 - (b) Design a capacitor filter (full wave) that meets the following specifications, $V_{dc} = 20V$, $I_{dc} = 100 \text{ mA}$, ripple factor = 0.01. Use f = 60 Hz.
 - (c) Draw the output for the following ckt. Take $V_T = 0.7V$ (8+3+4)

- 6. (a) Derive an expression for the frequency of oscillation for a Colpitt Oscillator.
 - (b) Identify the type of feedback and calculate the value of β for the given circuits

- (a) Explain the IV characteristics of N-channel enhancement mode MOSFET and indicate the 3 distinct regions of operation.
 - (b) An enhancement type N-MOS transistor with $V_T = 0.7V$ conducts a current $i_D = 100 \,\mu\text{A}$ when $V_{GS} = V_{DS} = 1.2V$. Find the value of i_D for $V_{GS} = 1.5V$ and $V_{DS} = 3V$. Also, calculate the value of the drain-to-source resistance r_{DS} for small V_{DS} and $V_{GS} = 3.2V$.
 - (c) Draw the circuit diagram of a CS MOSFET Amplifier and analyse it to find the voltage gain. (5+3+7)