[This question paper contains 5 printed pages.]

Your Roll No.

6005

B.Sc. (Hons.) Electronics / III Sem.

В

Paper - MAHT - 305

Mathematics - II

(Admissions of 2010 and onwards)

Time: 3 Hours

Maximum Marks: 75

(Write your Roll No. on the top immediately on receipt of this question paper.)

There are two Sections. All parts of Question No. 1 in Section—I is compulsory. Attempt any four questions from Section II. Marks are as indicated.

SECTION - I

- 1. (a) Let $v_1 = (1, -1, 0)$, $v_2 = (0, 1, -1)$ and $v_3 = (0, 0, 1)$ be three elements of \mathbb{R}^3 . Show that the set of vectors $\{v_1, v_2, v_3\}$ is linearly independent. (3)
 - (b) Find the rank of the matrix

$$\begin{bmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \\ 3 & 1 & 2 \end{bmatrix}$$
 (3)

(c) Find the nature, index and signature of quadratic form.

$$2x_1x_2 + 2x_1x_3 + 2x_2x_3. (3)$$

P.T.O.

- (d) Show that f(z) = Re z = x is continuous but not differentiable. (3)
- (e) Classify each of the following differential equation by its kind, order and degree.

(i)
$$\frac{\partial u}{\partial t} = K \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} \right)$$

(ii)
$$\left(\frac{d\mathbf{r}}{d\mathbf{s}}\right)^3 = \sqrt{\frac{d^2\mathbf{r}}{d\mathbf{s}^2} + 1}$$
 (3)

SECTION - II

- (a) Find the dimension of the sub-space of R⁴ spanned by the set {(1 0 0 0), (0 1 0 0), (1 2 0 1), (0 0 0 1)}.
 Also find 0 basis of the subspace.
 - (b) Determine the values of 'a' and 'b' for which the system.

$$x + 2y + 3z = 6$$

 $x + 3y + 5z = 9$
 $2x + 5y + az = b$

has (i) no solution (ii) unique solution (iii) infinite number of solutions. Find the solutions in case (ii). (5) (c) Solve the following system of equations by Gaussian elimination method.

$$2x_1 + x_2 + 3x_3 = 1$$

$$4x_1 + 4x_2 + 7x_3 = 1$$

$$2x_1 + 5x_2 + 9x_3 = 3$$
(5)

3. (a) Verify the Cayley-Hamilton theorem for the matrix

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 5 \\ 3 & 5 & 6 \end{bmatrix}$$

and hence find the inverse of A. (5)

(b) Show that any square matrix 'A' can be written as the sum of a symmetric matrix 'B' and skew-symmetric matrix 'C'. (5)

(c) Show that
$$A = \begin{bmatrix} i & 0 & 0 \\ 0 & 0 & i \\ 0 & i & 0 \end{bmatrix}$$

is Skew-Hermitian and also unitary. Find the eigen values. (5)

4. (a) Find the analytic function

$$f(z) = u + iv$$
, where
 $u = e^{x} (x \cos y - y \sin y) + 2 \sin x \cdot \sinh y + x^{3} - 3xy^{2} + y$. (5)

P.T.O.

(b) Evaluate, using Cauchy's integral formula:

$$\int_{C} \frac{\cos \pi z}{z^2 - 1} dz$$
, around a rectangle with vertices $2 \pm i$,
$$-2 \pm i$$
 (5)

(c) Determine the residues at all its poles of the function

$$f(z) = \frac{z^2}{(z-1)^2(z+2)}$$

Hence evaluate $\int_{C} f(z) dz$, where C is the Circle

$$|\mathbf{z}| = 2.5. \tag{5}$$

5. (a) Solve :-

$$\left(1+2e^{\frac{x}{y}}\right)+2e^{\frac{x}{y}}\left(1-\frac{x}{y}\right)\cdot\frac{dy}{dx}=0$$
 (5)

(b) Solve :-

$$(1 + y^2)dx + (x - tan^{-1}y)dy = 0$$
 (5)

- (c) Find particular member of orthogonal trajectories of $x^2 + cy^2 = 1$ passing through the point (2, 1).
- 6. (a) Solve AX = B by LU decomposition using Gaussian elimination where

$$A = \begin{pmatrix} 2 & 4 & -6 \\ 1 & 5 & 3 \\ 1 & 3 & 2 \end{pmatrix}$$
and $B^{T} = (-4, 10, 5)$. (5)

(b) Find the orthogonal transformation which transforms the quadratic form

$$x_1^2 + 3x_2^2 + 3x_3^2 - 2x_2x_3$$

to canonical form. (5)

(c) Find the Laurent series expansion of

$$f(z) = \frac{e^z}{z(1-z)}$$

about z = 1. Find the region of convergence of the expansion. (5)

(a) Evaluate

$$I = \int_0^\pi \frac{\cos^2 3\theta \, d\theta}{\left(5 - 4\cos 2\theta\right)} \tag{5}$$

(b) Solve:

$$(x-2y+1)dx + (4x-3y-6)dy = 0$$
 (5)

(c) Solve:

$$(y+x)dy = (y-x)dx (5)$$