[This question paper contains 4 printed pages.]

Sr. No. of Question Paper: 8746

C

Roll No.....

Unique Paper Code

: 251303

Name of the Paper

: ELHT-302: Analog Electronics - I

Name of the Course

: B.Sc. (Hons) Electronics, Part - II

Semester

: III

Duration

: 3 Hours

Maximum Marks

: .75

Instructions for Candidates

1. Write your Roll No. on the top immediately on receipt of this question paper.

2. Attempt FIVE Questions in all.

3. Question No. 1 is Compulsory.

4. Attempt any FIVE parts of Question No. 1.

5. Use of Scientific Calculator is allowed.

1. (a) If $Vs = V_t Sin(\omega t)$, plot the output waveform for the following circuit and give suitable explanation for the same. (3 Marks)

- (b) Define α and β for the case of transistor amplifier and derive a relation between the two. (3 Marks)
- (c) For an amplifier connected in CE mode, calculate the values of β , I_c and I_g .

 Given $\alpha = 100$ and $I_g = 50$ μ A.

 (3 Marks)
- (d) A phase shift oscillator uses three identical RC sections in the feedback network, using R= 100 k Ω and C = 0.01 μ F. Calculate the frequency of oscillations. (3 Marks)
- (e) What is TUF? Give the significance of TUF for a power supply.

(3 Marks)

- (f) An amplifier with 10% negative feedback has an open loop gain of 50. If open loop gain increases by 10% what is the percentage change in the closed loop gain.

 (3 Marks)
- (g) What are Power Amplifiers? Classify them on the basis of efficiency.

 (3 Marks)
- 2. (a) Give the construction of a power supply with the help of a block diagram explaining each block. Derive the expression for the ripple factor for a shunt capacitor filter. (8 Marks)
 - (b) For the following circuit, determine the range of R_L and I_L to maintain a constant output at 10V. Input voltage is 50 V and maximum diode current I_{zm} = 32mA. Determine the diode rating also.
 (5 Marks)

- (c) Determine the nominal voltage for a Zener diode of V_z=12V, at 373K.

 Temperature Coefficient = 0.072%/°C. (2 Marks)
- 3. (a) With the help of Hybrid equivalent circuit diagram, derive the expression of voltage gain for low-& mid-frequencies of a CE amplifier. (8 Marks)
 - (b) For a voltage divider bias circuit with $V_{CC} = 15V$, $R_1 = 8 \text{ k}\Omega$, $R_2 = 4 \text{ k}\Omega$, $R_C = 900 \text{ k}\Omega$, $R_E = 1 \text{ k}\Omega$ and $R_C = 50$, determine values of $R_C = 100 \text{ k}\Omega$, $R_C = 100 \text{ k}$
- 4. (a) Derive the expression for the maximum efficiency of a transformer coupled Class A amplifer. (5 Marks)

Compare the efficiencies of class A amplifier with a resistive load with that of class A transformer coupled amplifier. Justify your answer.

(3 Marks)

- (b) Explain the concept of "Cross Over Distortion" and how it can be overcome. (3 Marks)
- (c) Calculate the lower cut-off frequency for a CE amplifier given the values of Coupling Capacitor (C_c) = $2\mu F$, R_s =1 k Ω , h_{ie} =1 k Ω , h_{fe} =80, R_1 =5 k Ω , R_s =3 k Ω , R_c =0 k Ω . (4 marks)
- 5. (a) For a current shunt feedback configuration, derive the expressions for input impedance and output impedance. Compare R_{ir}, R_{of} with R_i, R_o qualitatively and where symbols have their usual meaning. (8 Marks)
 - (b) Prove that Gain Bandwidth product remains constant for a negative feedback amplifier. (4 Marks)
 - (c) Calculate the closed loop again for the negative feedback amplifier when open gain $A_v = 100,000$ and $\beta = 1/100$. Also calculate closed loop gain when A is increased by 50%. (3 Marks)
- 6. (a) Derive the expression for the frequency of oscillations of a phase shift oscillator using three RC network. Also determine the minimum gain of the amplifier for sustained oscillations. (8 Marks)
 - (b) Explain Barkhausen criterion for oscillations. (2 Marks)
 - (c) It is required to generate an output frequency of 100 kHz using colpitts oscillator. Determine the value of C₁ and C₂ given L=0.5 mH.

 Assume (C₁=C₂). (5 Marks)
- 7. (a) For the given circuit determine the small signal voltage gain and input and output resistances given $V_{DD}=12V$, $R_1=100~k\Omega$, $R_2=40~k\Omega$, $R_D=5~k\Omega$. The transistor parameters are: $V_{TN}=2V$, $Kn=0.5~mA/V^2$, $\lambda=0.01V^{-1}$, $Rsi=5~k\Omega$. Here the symbols have their usual meaning. (10 Marks)

(b) Draw the dc load line for CS MOSFET amplifier. Define and elaborate on Q point and transition point. (5 Marks)