[This question paper contains 4 printed pages.] Sr. No. of Question Paper: 8746 C Roll No..... Unique Paper Code : 251303 Name of the Paper : ELHT-302: Analog Electronics - I Name of the Course : B.Sc. (Hons) Electronics, Part - II Semester : III Duration : 3 Hours Maximum Marks : .75 ## Instructions for Candidates 1. Write your Roll No. on the top immediately on receipt of this question paper. 2. Attempt FIVE Questions in all. 3. Question No. 1 is Compulsory. 4. Attempt any FIVE parts of Question No. 1. 5. Use of Scientific Calculator is allowed. 1. (a) If $Vs = V_t Sin(\omega t)$, plot the output waveform for the following circuit and give suitable explanation for the same. (3 Marks) - (b) Define α and β for the case of transistor amplifier and derive a relation between the two. (3 Marks) - (c) For an amplifier connected in CE mode, calculate the values of β , I_c and I_g . Given $\alpha = 100$ and $I_g = 50$ μ A. (3 Marks) - (d) A phase shift oscillator uses three identical RC sections in the feedback network, using R= 100 k Ω and C = 0.01 μ F. Calculate the frequency of oscillations. (3 Marks) - (e) What is TUF? Give the significance of TUF for a power supply. (3 Marks) - (f) An amplifier with 10% negative feedback has an open loop gain of 50. If open loop gain increases by 10% what is the percentage change in the closed loop gain. (3 Marks) - (g) What are Power Amplifiers? Classify them on the basis of efficiency. (3 Marks) - 2. (a) Give the construction of a power supply with the help of a block diagram explaining each block. Derive the expression for the ripple factor for a shunt capacitor filter. (8 Marks) - (b) For the following circuit, determine the range of R_L and I_L to maintain a constant output at 10V. Input voltage is 50 V and maximum diode current I_{zm} = 32mA. Determine the diode rating also. (5 Marks) - (c) Determine the nominal voltage for a Zener diode of V_z=12V, at 373K. Temperature Coefficient = 0.072%/°C. (2 Marks) - 3. (a) With the help of Hybrid equivalent circuit diagram, derive the expression of voltage gain for low-& mid-frequencies of a CE amplifier. (8 Marks) - (b) For a voltage divider bias circuit with $V_{CC} = 15V$, $R_1 = 8 \text{ k}\Omega$, $R_2 = 4 \text{ k}\Omega$, $R_C = 900 \text{ k}\Omega$, $R_E = 1 \text{ k}\Omega$ and $R_C = 50$, determine values of $R_C = 100 \text{ k}\Omega$, k}$ - 4. (a) Derive the expression for the maximum efficiency of a transformer coupled Class A amplifer. (5 Marks) Compare the efficiencies of class A amplifier with a resistive load with that of class A transformer coupled amplifier. Justify your answer. (3 Marks) - (b) Explain the concept of "Cross Over Distortion" and how it can be overcome. (3 Marks) - (c) Calculate the lower cut-off frequency for a CE amplifier given the values of Coupling Capacitor (C_c) = $2\mu F$, R_s =1 k Ω , h_{ie} =1 k Ω , h_{fe} =80, R_1 =5 k Ω , R_s =3 k Ω , R_c =0 k Ω . (4 marks) - 5. (a) For a current shunt feedback configuration, derive the expressions for input impedance and output impedance. Compare R_{ir}, R_{of} with R_i, R_o qualitatively and where symbols have their usual meaning. (8 Marks) - (b) Prove that Gain Bandwidth product remains constant for a negative feedback amplifier. (4 Marks) - (c) Calculate the closed loop again for the negative feedback amplifier when open gain $A_v = 100,000$ and $\beta = 1/100$. Also calculate closed loop gain when A is increased by 50%. (3 Marks) - 6. (a) Derive the expression for the frequency of oscillations of a phase shift oscillator using three RC network. Also determine the minimum gain of the amplifier for sustained oscillations. (8 Marks) - (b) Explain Barkhausen criterion for oscillations. (2 Marks) - (c) It is required to generate an output frequency of 100 kHz using colpitts oscillator. Determine the value of C₁ and C₂ given L=0.5 mH. Assume (C₁=C₂). (5 Marks) - 7. (a) For the given circuit determine the small signal voltage gain and input and output resistances given $V_{DD}=12V$, $R_1=100~k\Omega$, $R_2=40~k\Omega$, $R_D=5~k\Omega$. The transistor parameters are: $V_{TN}=2V$, $Kn=0.5~mA/V^2$, $\lambda=0.01V^{-1}$, $Rsi=5~k\Omega$. Here the symbols have their usual meaning. (10 Marks) (b) Draw the dc load line for CS MOSFET amplifier. Define and elaborate on Q point and transition point. (5 Marks)