This question paper contains 4 printed pages]

	Roll No.							
S. No. of Question Paper : 6450					N			
Unique Paper Code : 251301					D			
Name of the Paper : Digital Electronics (H	E LHT-301)						1	
Name of the Course : B.Sc. (H) Electronics	5						۰.	
Semester : III		•					·	
Duration : 3 Hours					Max	imum	Mark	s : 75
(Write your Roll No. on the top immedic	itely on rece	ript of i	his q	puest	ion p	aper.)		
Question number	1 is compul	sory.					*	
Attempt <i>five</i> qu	estions in a	ıll.						
Use of non-programmable sci	entific calcu	ulator is	s allo	wed	ł.			
1. (a) Covert 645.75_{10} into equivalent Bina	ary, Octal ar	nd Hex	adec	imal	l nun	nber.		3
• (b) Find the complement of the following	ng function	and sh	low t	that	f.f'	= 0,	where	: 3
f = A + CD + (A	(C'	+ ⁻ D)			·			-
(c) Implement a full subtractor using 3 l	ine to 8 lin	e deco	der.					3
(<i>d</i>) Find the characteristic equation for S	R flip-flop.							3
(e) A memory has a capacity of 16 K	× 32. Find	:						3
(<i>i</i>) data input and data output line	es							
(<i>ii</i>) address lines	•				·			
(<i>iii</i>) number of bytes.							П	

P.T.O.

].

- Define Fan-in and Noise Margin. Explain working of positive logic CMOS NAND (u)8 gate.
 - The seven bit hamming code as received is 0010001 (MSB as P_1 and LSB as D_7). (*b*) Assuming that even parity has been used, check if it is correct or not. If not, then find the correct code. 3
 - Express the following functions in a sum of minterms and a product of (C)maxterms :
 - (*i*) F(A, B, C) = (A' + B) (B' + C)
 - F(X, Y, Z) = (XY + Y'Z)*(ii)*
- Simplify the following function using Quine-Mc Cluskey method : 3. (u)
 - $F(A, B, C, D) = \sum m (2, 3, 7, 10, 11, 14) + \sum d (1, 5, 15)$

Also verify the result using K-map.

(*b*) Implement the following function using 4×1 MUX :

$$(x + y) (x' + z) (y + z')$$

Design a combinational circuit with three inputs x, y and z, and three outputs A, B *(c)* and C. When the binary input is 0, 1, 2 or 3, the binary output is two greater than the input. When the binary input is 4, 5, 6 or 7, the binary output is two less than the input. 4

2.

7

4

4. ·	<i>(u)</i>	Draw a schematic circuit of an edge triggered JK master slave flip-flop using NAN	D
		gates. Explain its operation with the help of a truth table.	6
	(b)	The contents of a 8-bit bidirectional shift register are 11000011. What would be the	e
	·	contents of the register after two right shifts and then three left shifts. $D_{in} = 1$.	5
	(c)	Multiply 1101_2 by 0111_2 using the computer method.	4
5.	(<i>u</i>)	Design a MOD-12 asynchronous counter using JK flip-flop.	6
	(<i>b</i>)	Draw block diagram of four bit shift register with parallel input and serial output.	5
	(C)	Using excitation table, convert a SR flip-flop to a D flip-flop.	4
6.	(<i>u</i>)	Design a type T-counter that goes through states :	8
·		6, 3, 7, 8, 2, 9, 1, 12, 14, 0, 6, 3	
-		Also check for the bush. Give the state diagram, state table and circuit diagram. σ	
	(<i>b</i>)	Show that a Johnson's counter with three flip-flops produces a sequence of six states	5.
		Also sketch its waveforms.	4
	(<i>c</i>)	What is a modulus of a counter ? A certain JK flip-flop has a $t_{pd} = 10$ ns. What	ŧt
		is the largest Mod counter that can be constructed from these flip-flops and which wi	11

still operate up to 10 MHz.

(3)

3

6450

P.T.O.

(a) Distinguish between SRAM and DRAM. Give the internal structure of single static RAM
cell using MOS transistor and explain its working.

(4)

- (b) With the help of a block diagram explain the working of successive approximation ADC.
- (c) The logic levels used in a 6 bit R-2R ladder DAC are 1 = 5V and 0 = 0V.What is the full scale output, percentage resolution and also find the output voltage for inputs :

(*i*) 010110

(*ii*) 101011 .

6450

7.

800

6450