[This question paper contains 4 printed pages.]

Sr. No. of Question Paper	:	6454	D	Your Roll No
Unique Paper Code	:	235372		
Name of the Course	:	B.Sc. (Hons.) Elect	ronics — II	
Name of the Paper	:	Mathematics – II /	Code : MA	HT 305
Semester	:	III		
Duration : 3 Hours				Maximum Marks : 75

Maximum Marks: 75

Instructions for Candidates

1. Write your Roll No. on the top immediately on receipt of this question paper.

- Use of Scientific Calculator is allowed. 2.
- 3. There are two sections. Section I is compulsory.
- 4. Attempt any four questions from Section II. Marks are as indicated.

SECTION I

- (a) Show that $S = \{(1,0,0), (1,1,0), (1,1,1), (0,1,0)\}$ is a spanning set of \mathbb{R}^3 1. but is not a basis of \mathbb{R}^3 .
 - (b) Find the rank of the matrix whose column vectors are

$$\mathbf{A} = \begin{bmatrix} 1 & 2 & 3 & 2 \\ 2 & 3 & 5 & 1 \\ 1 & 3 & 4 & 5 \end{bmatrix}$$

- (c) If A and B are square matrices of the same order and A is symmetric, then prove that B^TAB is also symmetric.
- (d) Determine the singularities and name the type of singularity :

$$\frac{z}{e^z - 1}$$

(e) Obtain differential equation of family of plane curves which are all circles of unit radius. (3×5=15)

SECTION II

- (a) Given H = {(5b + 2c, b, c): b, c ∈ ℝ}, show that H is a subspace of ℝ³.
 Find a basis and dimension of H.
 - (b) Find the values of a and b for which the system

2x + 3y + 5z = 97x + 3y - 2z = 82x + 3y + az = b

has (i) no solution (ii) unique solution (iii) infinitely many solutions. Find the solutions in case (iii).

(c) Solve the following system of equations by Gaussian elimination method.

$$2x_{1} + x_{2} + 4x_{3} = 12$$

$$8x_{1} - 3x_{2} + 2x_{3} = 20$$

$$4x_{1} + 11x_{2} - x_{3} = 33$$

- [1 *4*]
- 3. (a) Given $A = \begin{bmatrix} 1 & 4 \\ 2 & 3 \end{bmatrix}$, find A^{-1} using Cayley Hamilton Theorem. Also find $B = A^5 - 4A^4 - 7A^3 + 11A^2 - A - 101$.
 - (b) Diagnolize the given matrix $A = \begin{bmatrix} 4 & 1 \\ 2 & 3 \end{bmatrix}$ and hence find A^2 . Find the modal matrix P which diagnolizes A.
 - (c) Find the nature, index and signature of the quadratic form :

$$2x_{1}x_{2} + 2x_{1}x_{3} + 2x_{2}x_{3}$$
 (5×3=15)

 $(5 \times 3 = 15)$

4. (a) If f is analytic show that $f' = (\cos \theta - i \sin \theta) \frac{\partial f}{\partial r}$.

(b) Integrate the given function around the given contour C :

$$\frac{\sin z}{z^2 - iz + 2}$$

where C: rectangle with vertices at (1, 0), (1, 3), (-1, 3) and (-1, 0).

(c) Evaluate
$$\int_{0}^{2\pi} \frac{1}{5-3\sin\theta} d\theta$$
. (5×3=15)

- 5. (a) Solve (2x 5y)dx + (4x y)dy = 0; y(1) = 4.
 - (b) The slope at any point (x, y) of a curve is $1 + \frac{y}{x}$. If the curve passes through (1, 1), find it's equation.
 - (c) Solve $(y x^3)dx + (x + y^3)dy = 0.$ (5×3=15)
- 6. (a) Solve AX = B by LU-decomposition using Gaussian elimination where

$$A = \begin{pmatrix} 2 & 4 & -6 \\ 1 & 5 & 3 \\ 1 & 3 & 2 \end{pmatrix}$$

and $B^{T} = (-4, 10, 5)$.

(b) Prove that A = $\begin{bmatrix} 4 & 1-3i \\ 1+3i & 7 \end{bmatrix}$ is Hermitian. Find its eigen values.

(c) Show that for :

$$f(z) = \begin{cases} \frac{2xy(x+iy)}{x^2 + y^2} & \text{if } z \neq 0\\ 0 & \text{if } z = 0 \end{cases}$$

P.T.O.

6454

the CR equations are satisfied at origin but derivatives of f(z) at origin does not exist. $(5 \times 3 = 15)$

7. (a) Solve
$$\frac{dy}{dx} = \frac{1}{1+x^2} (e^{\tan^{-1}x} - y).$$

- (b) Find all solutions of i sinh iz = 2.
- (c) Find particular member of orthogonal trajectories of $x^2 + cy^2 = 1$ passing through the point (2,1). (5×3=15)

(800)