This que	stion paper cont	ains 4+1 pr	rinted pages	s]						٠.	
				Roll No	o. 🔲						
S. No. of	Question Paper	: 6452	•								
Unique Paper Code		: 251303						D			
Name of the Paper		: ELHT-3	302 : Analoş	g Electron	ics—I						
Name of the Course		: B.Sc. (H	lons.) Elect	ronics			•				
Semester	•	: III		·			•		•		
Duration :	3 Hours						1	Maxim	um M	Iarks	s: 75
	(Write your Rol	l No. on the	e top immed	liately on r	eceipt o	of this	questic	on pap	er.)		
		At	tempt five o	questions i	n all.						
•		Que	estion No. 1	l is compu	lsory.						
		Use of	scientific C	alculator is	allow	ed.				٠.	
1. (a)	Explain the St	atic and Dy	ynamic resis	stance of d	iode.	٠					3
(<i>b</i>)	Which configu	ıration: con	nmon base	or commo	n emitt	er is s	uitable	for hi	igh fr	eque	ncy
	applications ar	nd why?									3
(c)	What are the necessary conditions for oscillations?										3
(d)	Define current amplification factor β for common emitter transistor configuration. Establish										
	a relation bety	veen α and	β.				·				3
(e)	What is the ro	ole of coup	oling capaci	tor and by	-pass	capaci	tor in	a con	ımon	emi	itter
	BJT amplifier	?		•							3
										P .7	Г.О.
				•							

Sketch the output waveform for the given circuit for $V = V_m/3$. 2. *(a)*

- Sketch the characteristics of Zener diode and explain its working as voltage regulator. 5
- What are the clamping circuits? Explain positive, negative and biased clamper. (c)
- Discuss the hybrid parameter model of common emitter BJT amplifier. Find the expressions 3. *(u)* for current gain, voltage gain, input impedance and output impedance. 6
 - Explain the gain response with frequency for a two-stage RC coupled common emitter *(b)* BJT amplifier. 7
 - What are the requirements for biasing a transistor amplifier circuit? 2 -(c)
- Explain the working of Class A power amplifier circuit and find its efficiency. How can *(u)* its efficiency be increased? 7

- (b) Find the overall efficiency of Class B power amplifier when V_{CC} = 20 V and V_{CEmin} = 2.5 V.
- (c) For the voltage divider bias configuration of given circuit find:
 - (i) I_C
 - (ii) V_E
 - (iii) V_{CC}
 - (iv) V_{CE}
 - (v) V_B and R_1 .

- 5. Explain the characteristics of amplifier with voltage series feedback circuit. Also discuss the effect of introduction of feedback in the circuit. 7 Discuss the effect of negative feedback on the noise and bandwidth of the amplifier (*b*) circuit. Calculate the closed loop gain for the negative feedback amplifier when open loop amplifier (c) gain A_V = 20000 and β = 1/100. Also calculate the closed loop gain when A_V is increased by 50%. 4 Explain the working of a RC phase shift osillator and derive an expression for its cutoff 6. frequency. Calculate the frequency of the Colpitt's oscillator if the feedback network (*b*) has $C_1 = C_2 = 0.001 \mu F$ and L = 5 mH. What is the minimum value of g_m if $h_{ie} = 1 k\Omega$. Give the electrical equivalent circuit for a crystal oscillator. Compute the expressions of small signal voltage gain, input impedance and output impedance 7. *(a)* of common-drain amplifier. 6
 - (b) Determine the small signal voltage gain, input impedance and output impedance of common-drain amplifier with specifications: $V_{DD} = 12 \text{ V}$, $R_1 = 162 \text{ k}\Omega$,

 R_2 = 463 k Ω , R_{Si} = 4 k Ω and R_S = 0.75 k Ω . Transistor parameters are V_{Tn} = 1.5 V, K_n = 4 mA/V² and λ = 0.01 V⁻¹.

(c) Compare the characteristics of Common Source, Common Drain and Common Gate

Amplifier configurations.

3

800