Sl. No. of Ques. Paper

: 952

: 235372

G

Unique Paper Code

Name of Paper

: MAHT-305 : Mathematics - II

Name of Course

: B.Sc. (Hons.) Electronics

Semester

: III

Duration

: 3 hours

Maximum Marks

: 75

(Write your Ro!) No. on the top interestically on receipt of this question paper.)

Use of scientific calculator is allowed. There are two Sections. Section I is compulsory.

Attempt any four questions from Section II.

SECTION I

1. (a) Determine a polynomial p such that p=aq+br, where:

$$q(x)=x-2x^3+3x^4$$
, $r(x)=3-x+3x^2+2x^3-3x^4$, $a=3,b=3$

(b) Find the rank of the matrix:—

$$\begin{bmatrix} 1 & 5 & 4 \\ 0 & 3 & 2 \\ 2 & 3 & 10 \end{bmatrix}$$

3

(c) Show that $f(z) = \overline{z}$ is continuous but not differentiable.

3

- (d) Find the differential equation of the family of parabolas with foci at the origin and axes along x axis.
- (e) Find all the roots of the equation $\tanh z + 2 = 0$.

3

Section II

- 2. (a) Show that the vectors $b_1=(1, 1, 1)$, $b_2=(1, 0, -1)$ and $b_3=(1, -2, 1)$ are mutually orthogonal. Find the length of each given vector. Express (1, 0, 5) as a linear combination of b_1 , b_2 and b_3 .
 - (b) Solve the system by LU-decomposition:

$$3x-6y-3z=-3$$
,
 $2x+6z=-22$,
 $-4x+7y+4z=3$

(c) Define Linear Transformation. Show that the function T defined on R^2 by:

$$T(x,y) = 3x - 5y$$

is a linear transformation from R^2 into R.

· 5

3. (a) Verify Cayley-Hamilton theorem for the matrix:

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 5 \\ 3 & 5 & 6 \end{bmatrix}$$

and hence find the inverse of A.

5

(b) Show that:

$$A = \begin{bmatrix} i & 0 & 0 \\ 0 & 0 & i \\ 0 & i & 0 \end{bmatrix}$$

is Skew-Hermitian and also unitary. Find the eigen values and eigen vectors.

5

(c) Find a matrix P which diagonalizes the matrix:

$$A = \begin{bmatrix} 4 & 1 \\ 2 & 3 \end{bmatrix}$$

Verify that $P^{-1}AP=D$ where D is the diagonal matrix. Hence find A^6 .

5.

4. (a) Solve:

$$\left(x\cos\frac{y}{x} + y\sin\frac{y}{x}\right)y - \left(y\sin\frac{y}{x} - x\cos\frac{y}{x}\right)x\frac{dy}{dx} = 0$$

(b) Solve:

$$(x-y) dx-dy=0, y(0)=2$$

(c) Show that the family of parabolas $y^2=4cx+c^2$ is "self orthogonal".

5

5. (a) Find the Taylor's series expansion of f(z). Determine the region of convergence

$$f(z) = \frac{1}{(2z+1)^2}$$

about z=2.

5

(b) Evaluate:

$$\int_{0}^{\pi} \sin^{4}\theta \, d\theta.$$

5

(c) Determine the analytic function f(z) such that:

Im
$$(f'(z))=6x(2y-1)$$
 and $f(0)=3-2i$, $f(1)=6-5i$

Find f(1+i).

5

6. (a) Determine the values of a and b for which the system:

$$x+y+z=6,$$

$$x+2y+3z=10,$$

$$x+2y+az=b$$

has (i) no solution, (ii) unique solution and (iii) infinite number of solutions.

5

(b) If f(z)=u+iv is an analytic function of z=x+iy and

$$u+v=(x+y)(2-4xy+x^2+y^2)$$

then find u, v and the analytic function f(z).

5

(c) Solve
$$y^2 dx + (3xy-1) dy = 0$$
.

_

7. (a) Solve the system by Gauss Jordan method:

$$x+y+z=6,$$

 $2x-3y+4z=8,$
 $x-y+2z=5.$

5

(b) Find the Laurent series of $f(z) = \frac{e^z}{z(1-z)}$ about z=1. Find region of convergence.

. 5

(c) Solve
$$y(x^3e^{xy}-y) dx + x(xy+x^3e^{xy}) dy = 0$$
.

5