Sl. No. of Ques. Paper: 2050 GC-3

Unique Paper Code : 32511303

Name of Paper : Core Paper II Digital Electronics and VHDL

Name of Course : B.Sc. (Hons.) Electronics under CBCS

Semester : III

Duration : 3 hours

Maximum Marks : 75

(Write your Roll No. on the top immediately on receipt of this question paper.)
Attempt five questions in all. Question No. 1 is compulsory.

1.	Δtter	npt any five parts:	
••	(a)	Express (84) ₁₀ in the following codes: (i) Gray, (ii) Octal, (iii) Hexadecimal.	2
	(b)	Subtract 14 ₁₀ from 46 ₁₀ using 8 bit 2's complement arithmetic.	3
	(c)	Determine the complement of function, $y = A(BC' + BD' + CD')$	3
	(d)	What are asynchronous inputs in Flip Flops? Why are they called asynchronous?	3
	(e)	Explain the difference between edge triggered and level triggered Flip Flops.	3
	(f)	What is concurrent signal assignment statement? Give one example.	3
2.	(a)	Express the Boolean function, $F = AB + A'C$ as sum of minterms and product of maxterms.	5
	(b)	Design and explain the working of 4-bit ADDER/SUBTRACTOR circuit.	6
	(c) .	Compare TTL and CMOS logic families.	4
3.	(a)	Minimize the logic function given below using Karnaugh map: $F = \sum m(1, 3, 5, 8, 9, 11, 15) + d(2, 13)$	
		Implement the minimized expression using universal logic gates.	7
	(b)	Implement a full subtractor using a 3 to 8 decoder and logic gates.	4
	(c)	Design a 8×I MUX using two 4×I MUX.	4
4.	(a)	Design a MOD 10 asynchronous counter using positive edge triggered T Flip Flops.	6
	(b)	Design a synchronous counter that goes through the states 6, 4, 2, 1, 6,	ck
		whether the counter is self starting.	7
	(c)	Draw the logic diagram of a parallel-in parallel-out shift register that stores the binary wo	ord
		1101.	2
5.	(a)	Explain briefly different data types in VHDL.	4
	(b)	Write a VHDL code to implement 4×1 Multiplexer.	7.
	(c)	Explain the execution of the following process statement:	
		Process (A)	
		variable EVENTS_ON_A : INTEGER : = -I;	•
		begin	
		EVENTS_ON_A := EVENTS_ON_A+1;	
		end process;	4

6.	(a)	Design a 4 bit shift register using D Flip Flop. Explain how it can be modified to obtain	ı ring
		counter.	5
	(b)	Using excitation table, convert a T Flip Flop to a JK Flip Flop.	5
	(c)	Design a BCD to binary code converter.	5
7.	(a)	Define and explain the following terms using timing diagram:	
		(i) Setup time	
		(ii) Hold time.	5
	(b)	Differentiate between PLA and PAL.	6
	(c)	Name four important characteristics of digital IC logic families which determine	their
		performance.	4