Your Roll No. This question paper contains 2 printed pages. G Sl. No. of Ques. Paper : 947 : 251301 Unique Paper Code : Digital Electronics (ELHT-301) : B.Sc. (Hons.) Electronics / Computer Science Name of Paper Name of Course : III Semester : 3 hours Duration : 75 Maximum Marks (Write your Roll No. on the top immediately on receipt of this question paper.) Q. No. 1 is compulsory. Attempt five questions in all. Use of scientific calculator is allowed. 3 (a) Given that $16_{10}=100_b$ find the value of b. 3 (b) Implement a half adder using a 4×1 multiplexer. 1. (c) Give the logic implementation of a 32×4 bit ROM using a decoder of suitable size. 3 3 (d) Describe the Race around condition with reference to JK flip flop. (e) Define the terms: 3 Figure of Merit (i) Noise Margin. (a) Express the following functions as sum of Minterms and product of Maxterms: 6 2. (b) Given the 8-bit data word 01011011, generate the 12-bit composite word for the Hamming code that corrects and detects single errors. (c) Design a combinational circuit with three inputs x, y and z and three outputs A, B and C. When the binary input is 0, 1, 2 or 3, the binary output is two greater than the input. When the binary input is 4, 5, 6 or 7, the binary output is two less than the (a) Design a 4 bit priority encoder with D₀ having lowest priority and D₃ having highest (b) Using the Quine-McCluskey method, obtain the minimal expression for: 5 $f = \sum_{m(6,7,8,9)+d(10,11,12,13,14,15)}$ (c) Implement a half subtractor using a 2 to 4 line decoder. P. T. O.

4. (a) A synchronous sequential machine has a single control input X, a cloc outputs A and B. The clock triggers AB to change state from 00 to 01 to 10 the state diagram.	
Bruth, State told	k and two to 11 and
Draw the circuit of a 4 bit parell 1.	s 0. Draw
(c) Distinguish between combinational and sequential circuits. 5. (a) Design a type IV.	5
5. (a) Design a type J-K counter that goes through states 0, 1, 2, 4, 0	3
counter self-starting? Give the state diagram, state table and circuit diagram. (b) Implement the logical expression for difference of a five	. Is the
MUX. MUX.	7
(c) Convert an SR flip-flop to JK flip-flop using excitation table. 6. (a) Design a 4-bit POP	
6. (a) Design a 41.	4
of BCD to gray god	4
(b) Draw the block diagram of 4-bit Bidirectional shift register. (c) Explain working of positive logic Chapter.	5
TOURIU CIMOR NI A STE	5
ADC. ADC.	5
(b) A 6-bit DAC has a step at	ation
 (b) A 6-bit DAC has a step size of 50 mV. Determine the full scale output voltage 100000? (c) Distinguish between: 	6 and
(c) Distinguish between:	t is
(i) SRAM and DRAM	5
(ii) PROM and EEPROM.	
	4