[This question paper contains 2 printed pages.]

Sr. No. of Question Paper: 1808 C Roll No......

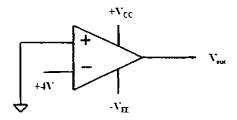
Unique Paper Code : 251404

Name of the Course : B.Sc. (Hons.) Electronics

Name of the Paper : Electronics Practical – VIII (ELHP-406)

Semester : IV

Duration + 1 Hour Maximum Marks : 25

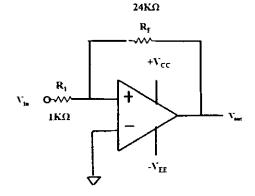

Instructions for Candidates

1. Write your Roll No. on the top immediately on receipt of this question paper.

- 2. Attempt any five questions from Section A and any ten questions from Section B.
- 3. Use of Scientific non-programming calculators is allowed.

SECTION – A (Attempt any five questions.)
$$(5\times1)$$

- 1. Give two reasons why an open loop opamp is unsuitable for linear applications.
- 2. Which circuit produces an output that approximates the area under the curve of an input function?
- 3. In what way is the voltage follower a special case of the non-inverting amplifier?
- 4. Determine the output voltage in the circuit given below:



- 5. How fast can the output of an opamp change by 10V, if its slew rate is 1V/µs?
- 6. Write the expression for 3-dB frequency of a first order high pass Butterworth filter.
- 7. Why are compensating networks used?

SECTION - B

(Attempt any ten questions.) (10×2)

- 1. Define Break frequency and Bandwidth.
- 2. Design an inverting amplifier with a gain of 5 and an input resistance of $10 \text{ k}\Omega$.
- 3. Find the bandwidth of the given circuit if the UGB of an opamp is 1 MHz.

- 4. What is CMRR? For an opamp of CMRR = 10^5 and the differential gain $A_d = 10^5$, Calculate the common mode gain A_c of the opamp.
- 5. How the main drawback of an ideal differentiator is overcome in a practical differentiator? Draw the circuits.
- 6. How can one convert a low pass filter into a high pass filter?
- 7. Draw the frequency response of an ideal band pass filter. Compare it with practical band pass filter.
- 8. Using a 741 opamp, design a first order high pass filter to have a cut-off frequency of 1 kHz.
- 9. Draw the general circuit along with equations for a 50% duty cycle 555 astable multivibrator.
- 10. State Barkhausen conditions for oscillation.
- 11. Design a phase shift oscillator for a frequency of 100 Hz.
- 12. What is the roll-off rate of (a) first order filter, (b) second order filter.
- 13. Predict the output waveform of the Schimtt trigger if the input is: (a) triangular wave, (b) sawtooth wave.