/T31 *	4.			4:4		
I his	question	paper	contains	4+1	printea	pages

Roll						

S. No. of Question Paper: 6476

Unique Paper Code

: 251405

D

Name of the Paper

: Electromagnetics—[ELHT-403]

Name of the Course

: B.Sc. (Hons.) Electronics

Semester

IV

Duration: 3 Hours

Maximum Marks: 75

(Write your Roll No. on the top immediately on receipt of this question paper.)

Attempt Five questions in all, including

Question No. 1 which is compulsory.

Scientific calculator is allowed.

All questions carry equal marks.

1. Attempt any five:

5×3=15

(a) Find the curl of the following field:

$$\overline{F} = \frac{150}{r^2} \hat{a}_r + 10 \hat{a}_{\phi}$$

(b) The finite sheet $0 \le x \le 1$ m, $0 \le y \le 2$ m on the z = 0 plane has a charge density:

$$\rho_0 = x y(x^2 + y^2 + 25)^{\frac{3}{2}} \text{ nC/m}^2.$$

Find total charge on the sheet.

- (c) State the equation of continuity. What is its physical significance?
- (d) Find the maximum torque on an 100 turn, rectangular coil of 0.2 m by 0.2 m carrying a current of 4 Amp in a field B = 6.5 T.
- (e) Region $0 \le z \le 1$ m is occupied by an infinite slab of permeable material ($\mu_r = 2.5$). If

$$\vec{B} = 10y \ \hat{a}_x - 5x \ \hat{a}_y \ \text{mWb/m}^2$$

within the slab, determine magnetisation \overrightarrow{M} .

- (f) Differentiate between magnetic scalar potential and magnetic vector potential.
- 2. (a) Given that:

6

$$D = \frac{5r^2}{4} \, \hat{a}_r$$

in spherical co-ordinate. Verify Divergence Theorem for the volume enclosed between r = 1 and r = 2.

(b) A charge distribution with spherical symmetry has density:

9

$$\rho_v = \begin{cases} \frac{\rho_0 r}{R} & 0 \le r \le R \\ 0 & r > R \end{cases}$$

Determine \overrightarrow{E} and V everywhere.

- (a) Define the capacitance of a capacitor. Derive an expression for the capacitance for a parallel plate capacitor. Also express the energy stored in terms of the capacitance of the system.
- (b) State and prove Uniqueness Theorem. Semi-infinite conducting planes $\varphi=0$ and $\varphi=\frac{\pi}{6}$ are separated by an infinitesimal insulating gap as in figure 1. If:

$$V(\varphi = 0) = 0$$
 and

$$V\bigg(\phi \ = \ \frac{\grave{\pi}}{6}\bigg) \ = \ 100 \quad V$$

calculate V and \overrightarrow{E} in the region between the plates.

Fig. 1

4. (a) State and explain the boundary conditions that are applied to magnetostatic fields at an interface between two different media.

P.T.O.

7

Derive the Biot-Savart's law and Vector Poisson's equation using Magnetic Vector Potential.

Calculate the total magnetic flux crossing the surface:

3

$$\varphi = \frac{\pi}{2}, 1 \le \rho \le 2 \text{ m}, 1 \le z \le 5 \text{ m}$$

for magnetic vector potential:

$$\vec{A} = -\frac{\rho^2}{4} \hat{a}_z \frac{Wb}{m}.$$

5. What do you mean by Displacement current? Explain why and how Maxwell modified the Ampere's circuital law.

Write four Maxwell's equations in integral and point form.

A circular conducting loop of radius 40 cm lies in x-y plane and has resistance 20 Ω . If the magnetic flux density in the region is given as:

 $\vec{B} = 0.2\cos 500t \ \hat{a}_x + 0.75 \sin 400t \hat{a}_y + 1.2\cos 314t \ \hat{a}_z \ T$

Determine the value of the induced current in the loop.

6. (a) Potential is given by:

$$V = 2(x + 1)^2 (y + 2)^2 (z + 3)^2 V$$

in free space. At a point P(2, -1, 4), calculate:

- Electric field intensity \overrightarrow{E} at point P *(i)*
- Flux density \overrightarrow{D} at point P
- (iii) Volume charge density ρ at point P.

- (b) Calculate the induced surface charge density for a given charge +Q placed at a distance
 h from a grounded conducting plane of infinite extent.
- 7. (a) Determine the self-inductance of a co-axial cable of inner radius a and outer radius b.
 - (b) A cylindrical conductor of radius 10^{-2} m has an internal magnetic field:

$$\vec{H} = \left(4.77 \times 10^4\right) \left(\frac{r}{2} - \frac{r^2}{3 \times 10^{-2}}\right) \hat{a}_{\varphi} \left(\frac{A}{m}\right)$$

What is the total current in the conductor?

5

Relevant Physical Constant:

$$\mu_0 = 4\pi \times 10^{-7} \text{ H/m}$$

$$\epsilon_0 = 8.85 \times 10^{-12} \text{ F/m}$$

$$c = 3 \times 10^8 \text{ m/s}$$

$$e = 1.6 \times 10^{-19} \text{ C}.$$