This	auestion	paper	contains	4	printed	pages
	7	Fup		-	P	P01

Roll No.							,			

S. No. of Question Paper: 1092

Unique Paper Code

: 251403

E

Name of the Paper

: Analog Electronics—II [ELHT-402]

Name of the Course

: B.Sc. (Hons.) Electronics

Semester

: **IV**

Duration: 3 Hours

Maximum Marks: 75

(Write your Roll No. on the top immediately on receipt of this question paper.)

Question No. 1 is compulsory.

Attempt Five questions in all.

All questions carry equal marks.

Use of scientific calculator is allowed.

- 1. (a) Why is an open loop operational amplifier unsuitable for linear applications? List all four negative feedback configurations.
 - (b) Give equivalent circuit diagram as well as high frequency model of an operational amplifier.
 - (c) Design a summing scaling amplifier to generate:

$$V_{out} = -(2.V_a + 3.V_b).$$

(d) Draw the output waveform for the given circuit (assume $V_z = 5 \text{ V}$ and $V_d = 0.7 \text{ V}$).

(e) What is an all pass filter? Draw its circuit diagram.

 $3 \times 5 = 15$

- 2. (a) Derive expressions for voltage gain (A_f) , input resistance (R_{if}) , output resistance (R_{of}) and bandwidth (f_f) of voltage shunt feedback amplifier using op-amp.
 - (b) How voltage shunt feedback amplifier is modified to be used as current to voltage converter (with the circuit diagram)?
 - (c) Design a subtractor using operational amplifier in difference amplifier mode.
- 3. (a) Design an integrator that can integrate signals between frequencies 2 kHz to 20 kHz.

 Draw and explain its frequency response.
 - (b) Derive an expression for the output of a basic differentiator. What are limitations of this circuit?
 - (c) What is the significance of relatively large value of CMRR?

2

- 4. (a) Design an astable multivibrator using 555 timer to generate a rectangular wave of frequency 10 kHz with duty cycle 80%. Modify this circuit to generate a square wave.
 - (b) Design a frequency divider circuit using 555 timer in monostable multivibrator mode so that $f_{out} = 0.5 f_{in}$, where $f_{in} = 2.5 \text{ kHz}$.
 - (c) Draw and discuss the frequency response of first and second order low pass filter with same pass band gain A_f and bandwidth f_H.
- (a) Define slew rate. When a square wave of 8 V_{PP} voltage and 2 MHz frequency is applied at input of a voltage follower circuit, the output is a triangular wave as shown below, calculate its slew rate.

- (b) Design a wide band reject filter with $f_L = 500$ Hz and $f_H = 2$ kHz and pass band gain of 5.
- (c) Draw block diagram of PLL (Phase Lock Loop). Define its free-running and capture states.

- 6. (a) Design a Wien bridge oscillator to generate a signal of frequency 500 Hz. 5
 - (b) What is the difference between basic and regenerative comparator? Design a regenerative comparator with threshold voltages as $V_{ut} = +1V$ and $V_{lt} = -1V$.
 - (c) Draw circuit diagram of triangular wave generator. How can this be used to generate sawtooth wave?
- 7. (a) Give circuit diagram of exponential amplifier and explain its operation.
 - (b) What is offset minimizing resistance (R_{om})? Why is it not needed in differential op-amp circuits?
 - (c) Compute the maximum total output offset voltage in the inverting amplifier with $R_1=1~k\Omega~\text{and}~R_f=4~k\Omega~\text{before and after connecting offset minimizing resistance}$ $(R_{om})~?$

(Assume $V_{io} = 7.5$ mV max., $I_{io} = 50$ nA max. and $I_B = 250$ nA max. at T = 25°C).