This i	auestion	paper	contains	4	printed	pages	
11110	decorrors	Pwper	0011001110	-	P	P51	

Roll No.						
KOH NO.	1	l I		l	ļ	l

S. No. of Question Paper: 109

Unique Paper Code

: 251405

 \mathbf{E}

Name of the Paper

: Electromagnetics (ELHT-403)

Name of the Course

: B.Sc. (H) Electronics

Semester

: **IV**

Duration: 3 Hours

Maximum Marks: 75

(Write your Roll No. on the top immediately on receipt of this question paper.)

Attempt Five questions in all,

including Question No. 1 which is compulsory.

Scientific calculator is allowed.

All questions carry equal marks.

- 1. (a) Calculate the magnetic flux density B at the centre of a current carrying loop when the radius of loop is 2.0 cm, loop current is 1.0 mA and loop is placed in air.
 - (b) In a material for which $\sigma = 5.0$ S/m and $\varepsilon_r = 1$, the electric field intensity is given as E = 250 sin 10¹⁰ t(V/m). Find the conduction and displacement current densities.
 - (c) Write the Laplace's equation in cartesian, cylindrical and spherical co-ordinates.
 - (d) Given that $D = 10 \times a_x$ (C/m²), determine the flux crossing 1.0 m² area that is normal to the x-axis at x = 3.0 m.
 - (e) Using the Gauss's law in electrostatics, find the electric field intensity due to an infinite line of charge.

P.T.O.

1094

2.	(a)	Explain the physical significance of:
		(i) Gradient
		(ii) Divergence
		(iii) Curl.
	(b)	Write the expression for incremental lengths in the cartesian, cylindrical and spherical
		co-ordinate system.
	(c)	Point charges 1 mC and -2 mC are located at (3, 2, -1) and (-1, -1, -4) respectively.
		Calculate the electric force on a 20 nC charge located at (0, 3, 1) and also the electric
		field intensity at that point.
3.	(a)	What is capacitance? Derive an expression for the capacitance of parallel plate
		capacitor. 5
	(b)	Using Laplace's equation find the potential function and electric field intensity for the region
	٠	between two concentric right circular cylinders, where $V = 0$ at $r = 1.0$ mm and
		V = 150 volts at r = 20.0 mm.
	(c)	What do you understand by polarization in dielectrics? Define the terms dielectric
		strength and dielectric constant.
4.	(a)	Use Gauss's theorem to find electric field intensity \overrightarrow{E} and electric flux density \overrightarrow{D} due
		to uniformly charged sphere having uniform charge density (p) at a point :
		(i) outside the sphere and
		(ii) inside the sphere.
		Also sketch variation of \overrightarrow{D} with the distance from the centre of sphere 'r'. 8

(3) 1094

	(b)	The point charges -1nC, 4nC and 3nC are located at (0, 0, 0), (0, 0, 1) as	ıd
		(1, 0, 0), respectively. Find the energy in the system.	5
	(c)	In a cylindrical conductor of radius 2 mm, the current density varies with the distan	ce
	·	from the axis according to $J = 10^3 e^{-400r} (A/m^2)$. Find the total current I.	2
5.	(a)	Derive Biot-Savart's Law and Ampere's circuital law using the concept of magnetic vector	or
•		potential \overrightarrow{A} .	6
	(b)	Planes $z = 0$ and $z = 4$ carry current $k = -10a_x$ (A/m) and $k = 10a_x$ (A/m) respective	ly.
٠		Determine H at :	
		(i) (1, 1, 1)	٠
		(ii) $(0, -3, 10)$.	5
	(c)	A solenoid 20.0 cm long and 1.0 cm in diameter has 100 turn winding. If this is place	ed
	•	in uniform magnetic field of strength 2.0 Wb/m ² and current of 10 A, calculate the maximu	ım
	٠.	torque on the solenoid.	4
5.	(a)	Write the differential and integral form of four Maxwell's equations and explain the	eir
		physical significance.	8
	(b)	A parallel plate capacitor with plate area of 5 cm ² and plate separation of 3 mm h	as
		a voltage 50 sin $10^3 t(V)$ applied to its plates. Calculate the displacement current assumi	ng
		$\epsilon = 2\epsilon_0$	5

P.T.O.

(4') 1094

(c) Starting from Maxwell's equation:

2

$$\vec{\nabla} \times \vec{\mathbf{E}} = -\frac{\partial \vec{\mathbf{B}}}{\partial t}$$

prove that:

$$\overrightarrow{\nabla} \quad \overrightarrow{\mathbf{B}} = \mathbf{0}$$

7. (a) Calculate the self inductance per unit length of infinitely long solenoid.

6

(b) In a medium characterized by

$$\sigma = 0$$
, $\mu = \mu_0$, $\varepsilon = \varepsilon_0$ and

$$\overrightarrow{\mathbf{E}} = 20\sin(10^8t - \beta z) \ a_y \ (\text{V/m}).$$

Calculate β and \overrightarrow{H} .

6

(c) A circular loop of 10 cm radius is located in the XY plane in a magnetic field. Determine voltage induced in the loop. Given that:

$$\vec{B} = 0.5 \cos 377t(3a_y + 4a_z) \text{ tesla.}$$

Relevant Physical constants:

$$\mu_0 = 4\pi \times 10^{-7} \text{ H/m}$$

$$\varepsilon_0 = 8.85 \times 10^{-12} \text{ F/m}$$

$$c = 3 \times 10^8 \text{ m/s}$$

$$e = 1.6 \times 10^{-19} \text{ C}.$$