This question paper contains 4 printed pages]							
	Roll No.						

S. No. of Question Paper: 1090

Unique Paper Code

: 251401

E

Name of the Paper

: Numerical Technique (ELHT 401)

Name of the Course

: B.Sc. (H) Electronics

Semester

: **IV**

Duration: 3 Hours

Maximum Marks: 75

(Write your Roll No. on the top immediately on receipt of this question paper.)

Attempt five questions in all, including Q. No. 1 which is compulsory

(In Q. No. 1 attempt any five parts only).

Use of scientific calculator is allowed.

- 1. (a) The value of π is 3.1415926. Find the absolute and relative error:
 - (i) π is rounded to 4 decimal digits
 - (ii) π is truncated to 4 decimal digits.
 - (b) For the tabulated data, construct divided difference table :

X .	$\mathbf{F}(\mathbf{x})$
-1	3
0	-6
3	39
6	822
7 .	1611

- (c) What is least square fit? Use it to find coefficients in linear regression.
- (d) What is the error formula for order of the error in the Runge-Kutta IV order method for solution of first order differential equation?
- (e) If a = 0.5555E1, b = 0.4545E1, c = 0.4535E1, find (a * b) c using 4 digit mantissa in computer arithmetic. $5 \times 3 = 15$
- 2. (a) Find the root of the equation:

$$F(x) = x^3 + 2x - 2 = 0$$

using false position method upto three significant digits.

- Explain Newton-Raphson method to solve algebraic and transcendental equation. 8
- 3. (a) Derive the formula for Lagrange's interpolation formula for non-uniform intervals. 8
 - (b) Using Newton's forward interpolation formula find the cubic polynomial which takes the following values:

. X		Y
0		1
1		2
2.		1
3	•	10 ⁻

Hence evaluate Y(1.5).

4. (a) Derive Simpson's 1/3 rule and estimate the error involved in it.

7. .

(b) A rocket is launched vertically upward from the ground. Its acceleration is registered during the first 80 seconds and is given in the table below:

t (s)	$a \text{ (m/s}^2)$
0	30.00
10 .	31.63
20	33.44
30	35.47
40	37.75
50	40.33
60	43.29
70	46.69
80	50.67

Find the velocity of the rocket at t = 80 seconds.

- 5. (a) Derive the Heun's method for the solution of first order differential equation graphically.
 - (b) Find the solution in the interval (0, 0.5) of the following differential equation using Euler's Cauchy Method dy/dx = x + y. Given h = 0.25 and y = 0 at x = 0.
- 6. (a) Using the Dolittle LU decomposition method determine the unknowns x_1 , x_2 and x_3 from the following equations:

$$x_1 + 5x_2 + x_3 = 14$$

 $2x_1 + x_2 + 3x_3 = 13$
 $3x_1 + x_2 + 4x_3 = 17$.

8

(b) Solve using Gauss Elimination method the following set of equations:

x

$$13x_1 + 5x_2 - 3x_3 + x_4 = 18$$

$$2x_1 + 12x_2 + x_3 - 4x_4 = 13$$

$$3x_1 - 4x_2 + 10x_3 - x_4 = 29$$

$$2x_1 + x_2 - 3x_3 + 9x_4 = 31.$$

7. (a) Fit a curve of the type ae^{-bx} for the given data:

(b) Compute $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$ for x = 1 and x = 6:

1090

4

200