This c	question paper contains 3 printed pages.]			
	Your Roll No	•••••		
1408		A		
B.Sc. (Hons.)/III				
ELECTRONIC SCIENCE—Paper 3.3 (XVII)				
(Communication)				
Time:	3 Hours Maximum Marks:	38		
(Write your Roll No. on the top immediately				
	on receipt of this question paper.)			
	Attempt Five questions in all, including			
Question No. 1 which is compulsory.				
Use of scientific calculator is allowed.				
1. (a)	Define unit impulse function.	1		
(b)	Derive the transfer function of a LPF and an HPF designed us	ing		
	an R and a C.	2		
(c)	Draw the composite video signal for colour T.V. System.	2		
(d)	Write the full form of CCITT.	1		
(e)	What is the nature of noise for an ideal receiver?	2		
(f)	Design an FM generator circuit using 555 timer.	2		
2. (a)	The V-I characteristics of a non-linear resistor is as follows:	31/2		
	T 15 . 95 W . 5W 2 . 10W 2			

[P.T.O.

An input voltage $V = (1 + 2 \cos \omega_0 t)$ is applied to this resistor.

- (i) Write the o/p current equation.
- (ii) Plot the frequency spectrum of input and output current.
- (b) An square wave of frequency ω_0 , is passed through a HPF with cut-off frequency 2.5 ω_0 .

Write the equation of current at the output of HPF and draw frequency spectrum.

This current is now fed to an LPF of cut-off frequency $0.5~\omega_0$. Write the equation of current at the output of LPF and draw frequency spectrum.

- 3. (a) Discuss the various types of internal noises. 3½
 - (b) Get an expression for addition of noise due to several amplifiers cascaded in series.
- (a) A 75 MHz carrier signal having an amplitude of 50 V is modulated by a 3 KHz audio signal having an amplitude of 20 V.
 - (i) Sketch audio signal.
 - (ii) Sketch carrier.
 - (iii) Construct and sketch modulated wave.
 - (iv) Determine modulation index.
 - (v) Draw frequency spectrum of carrier, audio signal and modulated wave.
 - (b) What is a balanced modulator? Draw its circuit diagram and obtain an expression for DSBSC.

5.	(a)	An FM transmitter has a frequency deviation of 20 KHz	
		Determine the percent modulation of this signal if it i	s
		broadcasted in 88—108 MHz band.	2
	(b)	Show that in FM, the toal power remains the same; however	r
		there is just a redistribution of power among the side bands.	2
	(c)	Write a short note on superheterodyne receiver.	3
6.	(a)	How would you use an AND gate to obtain PAM?	1
	(b)	Draw the block diagram of a TDM system.	2
	(c)	What is aliasing effect and how would you remove it?	2
	(d)	Draw circuit diagram for generation of PWM and PPM.	2
7.	(a)	What is the frequency of colour burst?	Ī
	(b)	Give three types of colour T.V. systems.	l
	(c)	Discuss QAM.	2
	(d)	Define Luminance and Chrominance signals for PAL system of	f
		colour T.V.	2
	(e)	What is image frequency of an AM receiver?	l
8.	Sho	ort notes (any two) $3\frac{1}{2} + 3\frac{1}{2}$	ę
	(a)	Average detector for amplitude demodulation.	
	(b)	Third method for SSB generation.	
	(c)	Foster Seeley discriminator.	