This question paper contains 3 printed pages.]

Your Roll No.

1410

A

B.Sc. (Hons.)/III

ELECTRONIC SCIENCE—Paper 3.5 (XIX)

(Material Science and I.C. Technology)

Time: 3 Hours Maximum Marks: 38

(Write your Roll No. on the top immediately on receipt of this question paper.)

Attempt five questions in all, including

Question No. 1 which is compulsory.

Non-programmble scientific calculator is allowed.

- (a) Outline the steps involved in obtaining Electronic grade from Metallurgical grade Silicon.
 - (b) What is the preferred technique for crystal purification?
 - (c) Explain the process of P-glass flow and outline its significance.
 - (d) What is emitter push effect?
 - (e) Mention the range of resistance values that can be obtained while fabricating monolithic ICs. Also discuss the feasibility of fabricating inductors on these ICs.

- (a) Explain the CZ technique for growing single crystal of Silicon.
 - (b) Show that in case of growth from mett, the ratio is $\frac{C_s}{C_o}$ is given by $K_0 \left[1 \frac{M}{M_0} \right]^{K_s \epsilon}$ where K_0 is equilibrium segregation coefficient and $\frac{M}{M_0}$ is the fraction solidified.
- (a) What do you mean by epitaxy? Explain the Kinetics of growth of VPE. Derive necessary formula for vapour phase mass transfer coefficient (hg).
 - (b) Calculate the value of gas phase mass transfer coefficient for a Silicon epitaxial process at 1200° C. The diffusivity of the gas is $25 \text{ cm}^2/\text{sec}$, $\rho_d = 1.5 \times 10^{-5} \text{ g/cm}^3$, $\mu = 2 \times 10^{-4} \text{ poise}$, V = 10 cm/sec, L = 50 cm.
- 4. (a) Outline the importance of SiO₂ in device fabrication. If a SiO₂ layer of thickness x is grown from thermal oxidation, what is thickness of Silicon being consumed?

Mol. wt. of Si = 28.09 gm/mole

Mol. wt. of $SiO_2 = 60.08$ gm/mole

Density of Si = 2.33 gm/cm^3

Density of $SiO_2 = 2.21 \text{ gm/cm}^3$.

Why is the basic model for thermal oxidation of Silicon not valid for dry Oxidation of Silicon when Oxide thickness ≤ 200 Å.

(3)

	(b)	Explain the technique of scanning Electron Microscopy. 3
5.	(a)	What is the difference between intrinsic and extrinsic diffusion?
		3
	(b)	Explain the ion implantation and ion stopping process. Draw a
		graph to show the variation of energy loss with energy for light
		and heavy ions.
6	(a)	Distinguish between a positive and a negative photoresist. Draw
		the exposure response curves and cross-section of the resist
		image after the development process.
	(b)	Explain the basic steps of a dry etching process.
7.	(a)	Explain various steps involved in the fabrication of
		MOSFET.
	(b)	Explain the different methods of isolation used for IC
		fabrication.