Sl. No. of Ques. Paper

: \$57

G

Unique Paper Code

: 251506

Name of Paper

: ELHT-504: Wave Propagation and Antenna

Name of Course

: B.Sc. (Hons.) Electronics

Semester

:∀

Duration:

: 3 hours

Maximum Marks

: 75

(Write your Roll No. on the top immediately on receipt of this question paper.)

Question No. 1 is compulsory. Attempt five questions in all. All questions carry equal marks.

- 1. (a) Write Maxwell's equations in point form. Give their physical significance.
  - (b) A parallel-plate capacitor with plate area 5 cm<sup>2</sup> and plate separation of 3 mm has a voltage 50 sin  $10^3$ ? Fig. 111.6 or its plates. Calculate the displacement current assuming  $\varepsilon=2\varepsilon_0$ .
  - (c) Explain how a quarter wave transformer can be used for matching the load to a transmission line.
  - (d) How are the waveguide resonators different from the conventional LC circuits?
  - (e) Define radiation pritters, directive gain and power gain of an antenna.

5×3

- 2. (a) Derive the transmission line equations. Also find expression for characteristic impedance of the line.
  - (b) An air line has characteristic impedence of 70 Ω and phase constant of 3 rad/m at 100 MHz. Calculate the inductance per meter and capacitance per meter of the line.
  - (c) Distinguish between distortionless line and lossless line.

8+5+2

- 3. (a) State and prove Poynting's theorem.
  - (b) The electric field in free space is given by:

$$\mathbb{Z} = 50\cos(10^3t + \beta x) \approx V/m$$

- (i) Find the direction of wave propagation.
- (ii) Calculate  $\beta$  and the time taken to travel a distance of  $\lambda/2$ .
- (c) Define loss tangent and give its physical significance.

8+4+3

- 4. (a) Define phase velocity and group velocity. Explain the pulse broadening in dispersive medium.
  - (b) For a lossless transmission line, obtain an expression for average power transferred from the source to load.
  - (c) Find the skin depth at a frequency of 1.5 MHz in aluminium, where  $\mu_r=1$  and  $\sigma=38.2$  MS/m. Also find propagation constant and wave velocity.
- 5. (a) Obtain expressions for reflection and transmission coefficients for a plane wave incident normally on an interface between two different media.
  - (b) Derive field expressions for TM modes in rectangular waveguides.
  - (c) Explain why a rectangular waveguide cannot support TEM mode. 4+9+2
- 6. (a) Derive Fresnel's equations for a parallel polarized plane wave incident obliquely at interface of two different media.
  - (b) Find the directive gain of the Hertzian dipole.
  - (c) Define effective area of a receiving antenna. Find an expression for effective area of Hertzian dipole.

    8+3+4
- 7. (a) Derive field expressions for a half wave dipole antenna.
  - (b) Mention two applications of small loop antenna.
  - (c) A magnetic field strength of 5 μA/m is required at a point on θ=π/2, 2 km from an antenna in air. Neglecting define iosses, now much power must a Hertzian dipole of length λ/25 transmit?
    7+2+6

Physical constants:  $\mu_0 = 4\pi \times 10^{-7} \text{ H/m}$ ;  $\epsilon_0 = 8.85 \times 10^{-12} \text{ F/m}$ ,  $c = 3 \times 10^8 \text{ m/s}$ .