Sl. No. of Ques. Paper: 956

G

Unique Paper Code

Code : 251505

Name of Paper

: ELHT - 503 : Electronics Instrumentation

Name of Course

: B.Sc. (Hons.) Electronics

Semester

: V

Duration:

: 3 hours

Maximum Marks

: 75

(Write your Roll No. on the top immediately on receipt of this question paper.)

Attempt five questions in all.

Question No. 1 is compulsory.

All questions carry equal marks.

Non-programmable scientific calculators are allowed.

1. Answer any five in brief:

- (a) What are the advantages of using a shielded cable?
- (b) Explain the working principle of the transducer commonly used in a gas lighter.
- (c) Briefly explain short term stability errors in a frequency counter.
- (d) Calculate the horizontal frequency from the given Lissajous patterns when the vertical frequency is 1.56 kHz.

Fig. 1

Fig. 2

- (e) Discuss the necessity and action of an active probe.
- (f) What are limiting errors in measuring instruments? A 800 mA voltmeter is specified to be accurate with ± 1%. Calculate the limiting error when instrument is used to measure 300 mA.

 3×5
- 2. (a) Explain, using the block diagram, the working principle of an integrating type of DVM. Also derive the mathematical relation for the voltage and time conversion. 5
 - (b) Design a multirange ammeter with range 0f 0-1 A, 5 A and 10 A employing individual shunt in each. A D'Arsonval movement with an internal resistance of 500 Ω and a full scale deflection of 10 mA is available.
 - (c) The figure shows a simple series circuit of R_1 and R_2 connected to 100 V dc source. If the voltage across R_2 is to be measured by voltmeters having:
 - (i) a sensitivity of 1000 Ω/V and
 - (ii) a sensitivity of 20000 Ω/V ,

find which voltmeter will read the accurate value of voltage across R_2 when both the meters are used on the 50 V range.

5

- 3. (a) Explain various sources of errors in frequency counter.
 - (b) Explain how Q-meter is used to measure low impedance components.
 - (c) Calculate the value of the multimeter resistor for a 50 V_{rms} ac rarge on the voltmeter as shown in the figure below:

3

3

6

- (a) Discuss how the preaccelerating anode, focussing anode, and accelerating anode form an electron lens in a cathode ray tube.
 - (b) Explain using block diagram the working principle and different operating modes of a Dual Trace CRO.
 - (c) Why and where are delay lines used in a CRT?
- 5. (a) Why do special probes need to be manufactured for measurement involving:
 - (i) High voltage
 - (ii) RF?
 - (b) State the working principle of a heterodyne wave analyzer.
 - (c) What is the advantage of an Electrodynamometer over a PMMC meter?
- 6. (a) Give the block diagram of lab type function generator and explain how it is used to generate different waveforms.
 - (b) Explain the working of RTD. How can RTD be used in a Wheatstone bridge to calculate an unknown impedance?

 5
 - (c) Which sensor will you prefer to observe temperature in the range of 1000 Deg C to 1500 Deg C and why?
- 7. (a) Explain the working of bonded resistance wire strain gauge.
 - (b) A resistance strain gauge with K=2 is mounted on a steel plate under a strain of 1.0E-6. Calculate the change in resistance with the original resistance of the gauge 130Ω .

(c) Differentiate between a thermistor and a thermocouple. Give an application for both.