This question paper con	tains 4 printed pages]							
5		Roll No.						
S. No. of Question Paper	: 6481		<u>.</u>					
Unique Paper Code	: 251604				D			
Name of the Paper	: Optics and Optical I	Electronics (F	ELHT 6	03)				
Name of the Course	: B.Sc. (Hons.) Electr	onics		٠.	:l			
Semester	: V I							
Duration: 3 Hours					Maxi	mum M	larks:7	5

(Write your Roll No. on the top immediately on receipt of this question paper.)

Attempt Five questions in all.

Question No. 1 is compulsory.

Each question is of 15 marks.

1. Attempt any five parts:

- (a) Write the wave equation for plane electromagnetic wave as well as spherical electromagnetic wave, in homogenous medium.
- (b) In a typical Michelson interferometer arrangement, a total of 1000 fringes are formed. What is the order of centermost fringe? What is the use of compensating glass in this interferometer?

P.T.O.

- (c) Draw the intensity distribution corresponding to a 5 slit Fraunhofer diffraction pattern, indicating the Principal maxima, secondary maxima and number of minima between two consecutive Principal maxima.
- Define Malus law. If a linearly polarised (LP) light is passed through a rotating polarizer, and its output intensity noted as a function of angle of rotation of polarizer, then draw, how the plot of output intensity variation vs. angle will look like.
- (e) Write three differences between LED and Photo Diode (PD) emphasizing on :
 - (i) Principle used
 - (ii) Band structure
 - (iii) Material used
- What is the difference between p-n, p-i-n, and avalanche photo diodes? Which one is used for fiber optics communication and why? $3\times5=15$
- 2. (a) A soap bubble is created in air. Different colours are seen on its surface. In this regard, discuss:
 - (i) phenomenon responsible for it.

- (ii) derive cosine law, i.e., the optical path difference between two successive waves emanating from the film.
- (iii) total phase difference between the two successive waves emanating from the film.
- (b) If the radius of curvature of the convex lens used in Newton ring is 100 cm. then find the radius of first three dark rings for $\lambda = 0.6 \mu m$.
- 3. (a) Fresnel coefficient of reflection for a parallel polarized wave is as follows:

$$r = \frac{\tan(\theta_1 - \theta_2)}{\tan(\theta_1 + \theta_2)}$$

where θ_1 , θ_2 are the angles of incidence and reflection respectively. Starting with this information, discuss when will we get a phase change of π upon reflection. Also discuss the condition when coefficient of reflection becomes zero.

- (b) Light of $\lambda = 0.5 \mu m$ is incident normally on a slit of width 0.2 mm. The screen is at a distance 3 m from the slit. Calculate the total width of central maxima.
- 4. (a) Derive an expression for intensity distribution in two slit Fraunhofer diffraction pattern.

 Also plot the variation of intensity on the screen.
 - (b) A left circularly polarized beam ($\lambda = 0.5893 \, \mu m$) is incident normally on a calcite crystal (with its optic axis cut parallel to the surface) of thickness 0.005141 mm. What will be the state of polarization of the emergent beam ?

P.T.O.

5,	(a)	Write three differences between chromatic and monochromatic aberrations.				
	(b)	For a step index fiber, n_1 , = 1.465 and n_2 = 1.45. Find numerical aperture	(N.A.)			
		of this fiber.	4			
•	(c)	Discuss three main components of a laser system.	5			
6.	(a)	Write the wavelengths of emission of the following laser systems:				
	·	(i) HeNe laser				
٠		(ii) Ruby laser				
		(iii) CO ₂ laser				
		(iv) Nd-YAG laser	4			
	(b)	Obtain Einstein coefficients A and B for an atomic system.	6			
	·(c)	Write a short note on semiconductor lasers.	5			