Γhis	questi	on paper con	tains 3 printed pag	ges]						
				Roll No	o					
s. N	o. of Q	uestion Paper	: 813							
Unique Paper Code : 219305							G			
Nan	ne of the	e Paper	: Metamorphic	Petrology (GEH	IT-303)				•	
Name of the Course			: B.Sc. (Hons.)	Geology						
Semester			: III							
Dur	ation:3	Hours					Max	imum N	Marks: 75	
	(Writ	e your Roll	No. on the top i	mmediately on	receipt	of this	questi	on pap	ver.)	
			Question	n No.1 is comp	ulsory.	•				
1.	Answer the following:					1+1+1	+1+4+1	+1+1+	-1+1+1+1	
	(a)	The foliatio	on in a slate is	called						
	(b)	Quartzite is	a metamorphic r	ock composed	of a dea	nse net	work o	f interl	locking	
		(i) Dolomi	te							
		(ii) Quartz	:							
		(iii) Calcite	;							
		(iv) Epido	te							
	(c)	Given a spe	ecific geotherm, h	igher grade roc	ks will	occur a	ıt	•••••	levels.	
	(d)	A metamor	phic zone has	d	egree of	freedo	m.			
	(e)	exhibit a m	e narked and	, as rays of						
	(f)	High pheng	gite content and l	ow X _{Mg} will ca	ause <u>ear</u> l	ly/late a	appeara	nce of	biotite.	
	(g)	The hornfe	els facies forms du	ıring	me	etamorp	hism.			
	(h)	Sillimanite	is a low/high tem	perature phase	relative	to anda	lusite?			

<i>(i)</i>	Metamorphic rocks are often found in association with:					
	<i>(i)</i>	volcanic eruptions				
	(ii)	earthquakes				
	(iii)	mountain building				
<i>(j)</i>	(j) The principal agents of metamorphism are:					
	(<i>i</i>)	heat and pressure				
	(ii)	heat and magma				
	(iii)	confining pressure and directed stress				
(<i>k</i>)	The	generally accepted temperature limits for metamorphism are :				
	(<i>i</i>)	metamorphism occurs at all temperatures				
	(ii)	there are no temperature limits to metamorphism because it is a continuum				
	(iii)	metamorphism is limited by pressure, not temperature				
	(iv)	200°C to the beginning of rock melting				
(1)	Me	tamorphism of limestone may contribute to global warming by the release of:				
	(i)	oxygen				
	(ii)	sulfuric acid				
	(iii)) carbon dioxide				
	(iv) nitrous oxide				
De	scribe	briefly how metamorphism takes place under the following conditions:				
(a)) co	ntact of a granite intrusion in a carbonate terrain				
(b)) at	subduction zone $7.5 \times 2 = 15$				

2.

(3)

Describe AFM projection for metamorphic rocks. Elaborate the basis of reduction of 3. components to three pseudocomponents. Explain the idea of projection from a phase in this context. Show typical positions of biotite, almandine, chloritoid, staurolite and chlorite 15 in a AFM diagram. What are metamorphic zones, index minerals, and metamorphic isograds? Write the minerals 4. that would result from chlorite + biotite in a pelite as grade increases from low to medium 15 grade. Draw relevant AFM diagrams. $7.5 \times 2 = 15$ Write notes on the following: 5. Metamorphic reactions (a) Pre-, syn and post-kinematic textures What is the concept of metamorphic facies and what is its use? 15 6. 15 7. Define the following: (a) Entropy Enthalpy (b) Gibbs free energy (c) Prograde metamorphism (d) Open system (e) $6+3\times3=15$ 8. Answer the following: (a) Discuss the factors that control metamorphism? (b) What are eclogite (*i*)

100

khonodalite

(iii) blue schist

(ii)