1330

Var-	D11	No		
iour	KOH.	(YO	 	

B.Sc. (Hons.)/III

A

GEOLOGY - Paper XII (iv)
(Rock Mechanisms and Rock Engineering)
(Admissions of 2004 and onwards)

Time: 3 hours

Maximum Marks: 45

(Write your Roll No. on the top immediately on receipt of this question paper.)

Attempt any five questions. All questions carry equal marks

- 1. What do you understand by "Index Testing" of rocks? Explain any two methods available for index testing with their limitations and significance.
- 2. Write short notes on any two of the following:
 - (i) Intact Rock.
 - (ii) Shear strength of rocks.
 - (iii) Computation of Tensile strength.
- 3. Discuss in brief the principle of rock mechanics and rock engineering.
- 4. What is "Rock Mass Rating"? How this concept is arrived at and what does it signify in terms of rock mass strength?
- 5. What do you understand by Hock-Brown Failure criterion? Explain in detail.
- Explain briefly any two of the following,
 - (i) Rock Quality Designation.
 - (ii) Mohr's Circle for stress
 - (iii) Standardization of sample dimensions for rock mechanical testing.
- 7. In how many ways the compressive strength of a rock is determined? Under what conditions triaxial compressive strength test becomes imperative?
- 8. (a). A tunnel is to be driven (against the dip) normal to the strike of moderately jointed (Dip amount 35°) rock. The rock is hard, bedded and moderately faulted. The joint condition is good and the anticipated water inflow is nearly 1100gpm/1000ft of tunnel. Calculate its RSR and based upon this value suggest (i) the thickness of shotereting and (ii) type of support required

(b) Joint spacing data on a 1:15 scale is given in the table. Calculate its RQD.

Joint No	Spacing from Origin (cm)	Joint No	Spacing from Origin (cm)	Joint No	Spacing from Origin (cm)
1	0.6		8.9	21	22.1
2	1.4	12	12.6	22	24.6
3	2.2	13	13.1	23	24.9
4	4.1	14	16.0	24	25.8
5	4.3	15	16.4	25	26.4
6	4.7	16	16.9	26	28.0
7	5.9	17	18.7	27	28.3
8	6.1	18	20.0	28	28.9
9	6.9	19	21.0	29	29.7
10	7.3	20	21.6	30	30