[This question paper contains 2 printed pages.]

Sr. No. of Question Paper: 899 E Your Roll No.....

Unique Paper Code : 219606

Name of the Course : B.Sc. (H) Geology

Name of the Paper : Introduction to Geochemistry [ET-4]

Semester : VI

Duration: 3 Hours Maximum Marks: 75

Instructions for Candidates

1. Write your Roll No. on the top immediately on receipt of this question paper.

- 2. Attempt any FIVE questions in all.
- 3. All questions carry equal marks.
- 4. Question **ONE** is compulsory.
- 1. (a) Match the following relative atomic abundances of the **five** most common elements that comprise 97% of the Earth's mass (5)

S.No	Elements	Weight (%)
1	Si	32.9
2	Fe	1.4
3	Mg	15.5
4	0	14.2
5	Ai	30.07

- (b) Name any five large ion lithophile (LIL) elements. (5)
- (c) Arrange the following high field strength (HFS) elements in increasing order of incompatibility

2. Discuss origin of elements with particular reference to Lee Cycle. (15)

- 3. What do you understand about Stable and Radiogenic isotopes? Discuss application of ¹⁴C in radiometric dating. (10+5= 15)
- 4. Meteorites are the cosmochemical source of data. Justify the statement. (15)
- 5. Write short note on any three of the followings:
- $(5 \times 3 = 15)$

- (i) Role of Si during dia genesis
- (ii) Role of volatile elements in the hydrothermal reactions
- (iii) Partial melting of mantle
- (iv) Balance of salt in sea water
- 6. Discuss any two of the following pairs:

 $(7.5 \times 2 = 15)$

- (a) Isomorphism and Polymorphism
- (b) Advection and diffusion of elements
- (c) Relationship between hydrogen ion concentration and oxidation potential
- 7. Discuss any two of the following:

 $(7.5 \times 2 = 15)$

- (a) K-Ar System
- (b) Be10 system
- (c) Isotopic fractionation
- 8. What makes the stable isotopes useful? Derive the following equation:

$$\alpha_{A-B} - 1 = (\delta_A - \delta_B)/(1000 + \delta_B).$$
 (7.5×2=15)