[This question paper contains 7 printed pages.]

2131 Your Roll No.

B.Sc. (Hons.) / I

C

MATHEMATICS - Paper II

(Analysis - I)

(Admissions of 2009 and 2010)

Time: 3 Hours Maximum Marks: 75

Write your Roll No. on the top immediately on receipt of this question paper.)

All the questions are compulsory.

- 1. Attempt any two parts:
 - (a) (i) If x, $a \in R$ and $\alpha \ge 0$ then show that $x + a \le \alpha$ if and only if $a \alpha \le x \le a + \alpha$.
 - (ii) Show that a number u is the infimum of a nonempty subset S of R if and only if u satisfies the conditions
 - (1) $s \ge a$ for all $s \in S$
 - (2) if v > u, then there exists $s' \in S$ such that v > s' (2.5.3)

- (b) (i) If x and y are any real numbers with x < y, then show that there exists a rational number r ∈ Q such that x < r < y.
 - (3.2.5) Show that $\sup \left\{ 1 \frac{1}{n} : n \in \mathbb{N} \right\} = 1$
- (c) (i) If $I_n = [a_n, b_n]$, $n \in \mathbb{N}$ is a nested sequence of closed and bounded intervals in \mathbb{R} , then show that there exists a $\xi \in \mathbb{R}$ such that $\xi \in I_n = \forall n \in \mathbb{N}$.
 - (ii) Define limit point of a set in R. Determine the set of all limit points of the interval (0.1).

 (3.2.5)

2. Attempt any three parts:

(a) Let (x_n) be a sequence of positive real numbers such that $\lim_{n \to \infty} |x|^n = 1$. Show that there exists a number r with $0 \le r \le 1$ such that $0 \le x_n \le r^n$ for all sufficiently large $n \in \mathbb{N}$. Hence, prove that

$$\lim_{n \to \infty} (x_n) = 0 \tag{5}$$

(b) Determine the following limits and also state all theorems used to evaluate these limits:

(i) $\lim_{n\to\infty} \frac{x^n}{n!}$ for any real number x

3

(ii)
$$\lim_{n \to \infty} (n!)^{1/n^2}$$
 (3.2)

- (c) (i) If (x_n) is a sequence of real numbers, show that there is a subsequence of (x_n) that is monotone
 - (ii) Prove that $\lim_{b \to \infty} \{b^{1/2}\} = 1$ for $b \ge 1$. (3.2)
- (d) (i) Prove that every Cauchy sequence in R is convergent.
 - (ii) Using the definition, show that the sequence $((-1)^n)$ is not a Cauchy sequence. (2.3)
- Attempt any two parts:
 - (a) Suppose that $\sum a_k$ and $\sum b_k$ are two infinite series of positive real numbers such that

$$\lim_{k\to\infty} \left| \frac{a_k}{b_k} \right| \neq 0$$

Then show that $\sum \mathtt{a}_k$ is convergent if and only if

 $\sum b_k$ is convergent. Hence or otherwise proves

that
$$\sum_{n=1}^{\infty} \frac{1}{n-1}$$
 is divergent. (4.2)

- (b) Examine the convergence and absolute convergence of the following series
 - (i) $\sum_{i=1}^{n} \frac{1}{3^{i} + x^{i}}$ for all positive values of x.

(ii)
$$\sum_{n=1}^{7} \left(-1\right)^{n-1} \left(\frac{1}{\sqrt{n^5}} + \frac{1}{\sqrt{(n+1)^5}}\right)$$
 (3.3)

(c) Give the statement of ratio test for an infinite series $\sum a_i$. Hence or otherwise examine the convergence of the series

$$\sum_{n=1}^{\infty} 2^{-n} \qquad \text{and} \qquad \sum_{n=1}^{\infty} \left(1 + \frac{1}{\sqrt{n}}\right)^{-n^{3/2}}$$
 (2.2.2)

- 4. Attempt any three parts:
 - (a) (i) Determine a condition on |x-4| that will assume that $\sqrt{x}-2$; $< 10^{-2}$.

- (ii) Use the definition of limit to show that $\lim_{x \to 2} (x^2 \pm 3x) = 10$. (3.2)
- (b) (i) Let $e \in \mathbb{R}$ and let $f : \mathbb{R} \to \mathbb{R}$ be such that $\lim_{x \to \infty} (f(x))^2 = L$. Show that if L = 0 then $\lim_{x \to \infty} f(x) = 0$.
 - (ii) Show that $\lim_{x \to 0} \sin\left(\frac{1}{x}\right) = \text{does not exist.}$ (3.2)
- (e) (i) Let f: A → R be a function. If (x_n) is a sequence in A that converges to a such that the sequence (f(x_p)) converges to f(C). Then show that f is continuous at point a.
 - (ii) Let $f: R \to R$ be defined as

f(x) = x if x is rational lex if x is irrational

Show that f is continuous only at $x = \frac{1}{2}$. (3.2)

- (d) (i) Let 1 = [a,b] be a closed bounded interval and let f: 1 → R be continuous on 1. Prove that f has an absolute maximum on 1.
 - (ii) Give an example of a function $f: \{0,1\} \to \mathbb{R}$ that is discontinuous at every point of [0,1] but if is continuous on [0,1]. (3.2)

- 5. Attempt any two parts
 - (a) Show that the function $f(x) = 1/x^2$ is uniformly continuous on $A = \{1, x\}$ but is not uniformly continuous on $B = \{0, x\}$. (3.3)
 - (b) Let $f: I \to R$ be differentiable on an interval I. Prove that if $f'(x) \le 0$ for all $x \in I$, then f is strictly decreasing on I. Is the converse true? Justify your answer. (4.2)
 - (b) (i) Use Mean Value theorem to prove:

sin x sin y ≤ x y, for all x, y ∈ R

the Let f and g be differentiable function on (a.b) sacu that the ghorn (a.b). Then there exists a constant cosuch that

$$f(x) = g(x) + e^{x^2}$$
 for all $x \in (a,b)$ (3.3)

- 6. Attempt any two parts:
 - (a) (i) Obtain Maclaurius series expansion of

(ii) Show that $0 \in [\log(1+x)] \to x \le 1$ whenever $x \ge 0$. (2.3)

(b) Show that If x > 0 then

$$1 + \frac{1}{2}x - \frac{1}{8}x^3 \le \sqrt{1 - x} \le 1 - x/2$$

and use this inequality to approximate $\sqrt{2}$. (5)

- te: 17 Approximate the number e with error less than 10
 - (ii) Let I be an open interval and let f: I → R have a second derivative on I. Prove that if f is a convex function on I then f'(x) ≥ 0 tot ail xxI.