[This question paper contains 4 printed pages.]

Sr. No. of Question Paper: 1877 C Roll No.........

Unique Paper Code : 235203

Name of the Course : B.Sc. (Hons.) Mathematics

Name of the Paper : MAHT-202 : Analysis - II

Semester : II

Duration : 3 Hours Maximum Marks : 75

Instructions for Candidates

1. Write your Roll No. on the top immediately on receipt of this question paper.

- 2. Attempt any three parts from each question.
- 3. All questions are compulsory.

1. (a) Use the $\epsilon \to \delta$ definition of the limit to find

$$\lim_{x\to c} \frac{1}{x}, \quad c>0$$

- (b) By using sequential criteria for limits, prove that $\lim_{x\to 0} \operatorname{sgn} \sin\left(\frac{1}{x}\right)$, $(x \ne 0)$ does not exist.
- (c) Let f,g be defined on $A \subseteq R$ to R, and let c be a cluster point of A. Suppose that f is bounded on a neighbourhood of c and $\lim_{x\to c} g = 0$. Prove that $\lim_{x\to c} fg = 0$.

(d) Prove that:

(i)
$$\lim_{x\to 0} \frac{1}{\sqrt{x_1}} = +\infty, \quad x \neq 0$$

(ii)
$$\lim_{x \to -\infty} \frac{1}{x^2} = 0$$
, $x \neq 0$ (5,5,5,5)

- 2. (a) Prove that a function $f: A \to R$ is continuous at the point $c \in A$ if and only if for every sequence (x_n) in A that converges to c, the sequence $(f(x_n))$ converges to f(c).
 - (b) Determine the points of continuity of the function x[x], where $x \to [x]$ denotes the greatest integer function.
 - (c) Let f and g be continuous from R to R and suppose that f(r) = g(r) for all rational numbers r. Show that f(x) = g(x), $\forall x \in R$.
 - (d) State Bolzano's Intermediate Value Theorem. Show that x = cos(x) for

some x in
$$\]0, \frac{\pi}{2}\[]$$
 (5,5,5,5)

- (a) Define uniformly continuous function on a set A ⊆ R. Show that if f and g
 are uniformly continuous on A and if they are both bounded on A, then their
 product fg is uniformly continuous on A.
 - (b) State non uniform continuity criteria. Show that the function $f(x) = x^2$ is not uniformly continuous on the set $A = [0, \infty[$
 - (c) Let f(x) = |x| + |x-1|. Check the differentiability of f at x = 0 and x = 1.

1877 3

- (d) Prove that if f is differentiable at a and g is differentiable at f(a), then the composite function gof is differentiable at a and (gof)'(a) = g'(f(a)).f'(a).

 (5,5,5,5)
- 4. (a) Let c be an interior point of the interval I at which $f: I \to R$ has a relative extremum. If the derivative of f at c exists, then show that f'(c) = 0.
 - (b) Show that $x < \tan x \ \forall \ x \in \left[\frac{1}{2} 0, \frac{\pi}{2} \right]$ and deduce that $\frac{x}{\sin x}$ is a strictly increasing function on $\left[0, \frac{\pi}{2} \right]$.
 - (c) Let a., a2, ..., a be real numbers and let f be defined on R by

$$f(x) = \sum_{i=1}^{n} (a_i - x)^2$$

Find the unique point of relative minimum for f.

- (d) Suppose that $f: [0.2] \to R$ is continuous on [0,2] and differentiable on [0,2] and that f(0) = 0, f(1) = 1, f(2) = 1.
 - (i) Show that there exists $c_1 \in [0.1]$ such that $f'(c_1) = 1$.
 - (ii) Show that there exists $c_2 \in]1,2[$ such that $f'(c_2) = 0$.
 - (iii) Show that there exists $c \in]0,2[$ such that $f'(c) = \frac{1}{3}$. (5,5,5,5)
- 5. (a) State and prove Taylor's Theorem.
 - (b) Obtain Maclaurin's series expansion for the function cos x.
 - (c) Show that $\sin x$ lies between $x \frac{x^3}{6}$ and $x, \forall x \in \mathbb{R}$.

1877

(d) Define a convex function on an interval $I \subseteq R$. Check which of the following functions are convex:

(i)
$$|x|, x \in [-1, 1]$$

(ii)
$$x + \sin x, x \in [0, \pi]$$
 (5.5.5.5)

(2800)