This question paper contains 4 printed pages.	itains 4 printed pages. 1	s question paper	This
---	---------------------------	------------------	------

Your Roll No.

513

Subsidiary for B.Sc. (Hons.)/II A MATHEMATICS – Paper IV (ii) (Statistics)

Time: 3 Hours

Maximum Marks: 75

(Write your Roll No. on the top immediately on receipt of this question paper.)

Attempt any six questions.

All questions carry equal marks.

- 1. (a) Show that the root mean square deviation is least when deviations are measured from the mean.
 - (b) Show that for a discrete distribution $\beta_2 \ge 1$. $6\frac{1}{2}$
- 2. (a) Show that for any two events A and B, P(A + B) = P(A) + P(B) - P(AB).
 - (b) A problem in statistics is given to three students A, B and C whose chances of solving it are $\frac{1}{2}$, $\frac{3}{4}$ and $\frac{1}{4}$ respectively, what is the probability that the problem will be solved?

 $6\frac{1}{2}$

6

- 3. (a) Find the mathematical expectation of the sum of numbers when n dice are thrown.
- 6
- (b) Six dice are thrown 729 times. How many times do you expect at least three dice to show a 5 or 6?
- $6\frac{1}{2}$
- 4. (a) Show that in a Poisson distribution with unit mean, mean deviation about mean is $\frac{2}{e}$ times the standard deviation.
- 6
- (b) If x_1 and x_2 are two independent Poisson variates with parameters m_1 and m_2 , show that $x_1 + x_2$ is also a Poisson variate with parameter $m_1 + m_2$. What can you say about $x_1 x_2$?
- $6\frac{1}{2}$
- (a) If X and Y are independent normal variates with means 6, 7 and variances 9, 16 respectively, determine λ such that:
- 6

$$P[2X + Y \le \lambda] = P[4x - 3y \ge 4\lambda]$$

(b) Show for a normal distribution with variance σ^2 ,

$$\mu_{2n} = 1.3.5 \dots (2n-1) \sigma^{2n}$$
 $6\frac{1}{2}$

 (a) Two variates X and Y have zero means, the same variance σ² and zero correlation. Show that

> $u = X \cos \alpha + Y \sin \alpha$, $V = X \sin \alpha - Y \cos \alpha$ have the same variance σ^2 and zero correlation. 6.

(b) Fit a straight line to the following data: 6

x: 1 2 3 4 5 y: 5 7 9 10 11

7. (a) If α is the acute angle between two regression lines, show that

 $\tan \alpha = \frac{1 - r^2}{r} \frac{\sigma_x \sigma_y}{\sigma_x^2 + \sigma_y^2}$

interpret the cases when r = 0, $r = \pm 1$.

- (b) In two large populations there are 30% and 25% respectively of fair haired people. Is this difference likely to be hidden in samples of 1200 and 900 respectively from the two populations?
- 8. (a) A drug was given to 10 patients and the increase in their BP was recorded to be
 6, 3, -2, 4, -3, 4, 6, 0, 0, 2
 Is it reasonable to believe that the drug has no effect on the change of BP?
 (Given t_{.05} = 2.26)
 (9 deg)

 $6\frac{1}{2}$

(b) Calculate χ^2 for the following contingency table :

(Under the hypothesis of independence) $6\frac{1}{2}$

- 9. Write short notes on the following: $4 + 4 + 4\frac{1}{2}$
 - (i) Cumulant Generating function and its properties.
 - (ii) Normal Distribution.
 - (iii) Mathematical Expectation.