This question paper contains 4 printed pages.]

Your Roll No.

511

Subsidiary for B.Sc. Honours / II A MATHEMATICS - Paper III

(Analytic Geometry of Two Dimensions and Vectors)

Time: 3 Hours

Maximum Marks: 75

(Write your Roll No. on the top immediately on receipt of this question paper.)

Attempt any six questions.

All questions carry equal marks.

- 1. (a) Find λ such that the equation $12x^2 10xy + 2y^2 + 11x 5y + \lambda = 0$ may represent a pair of straight lines.
 - (b) Prove that the angle between the lines joining the origin to points of intersection of the line y = 3x + 2 with the curve $x^2 + 2xy + 3y^2 + 4x + 8y = 11$ is $\tan^{-1}\left(\frac{2\sqrt{2}}{3}\right)$.
- 2. (a) Find the equation to the circle which cuts orthogonally each of the three circles $x^2 + y^2 + 2x + 17y + 4 = 0,$ $x^2 + y^2 + 7x + 6y + 11 = 0,$ $x^2 + y^2 x + 22y + 3 = 0$

6

- (b) Find the limiting points of the coaxal system of circles of which two members are $x^2 + y^2 6x + 12y + 5 = 0$ and $3(x^2 + y^2) + 10x 20y + 15 = 0$.
- 3. (a) Prove that the portion of a tangent to parabola cut off between the directrix and the curve subtends a right angle at the focus.
 - (b) Prove that through any point 3 normals can be drawn to the parabola and the algebraic sum of the ordinates of the feet of the three normals from any given point is zero. 6½

6

- 4. (a) Show that locus of the poles of normal chords to the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ is the curve $\frac{a^6}{x^2} + \frac{b^6}{v^2} = (a^2 b^2)^2.$
 - (b) If P and D are extremities of conjugate diameters of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, show that the tangents at P and D meet on the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 2$. 6½
- 5. (a) Show that the line lx+my = n will touch the hyperbola $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1$ if $a^2l^2 b^2m^2 = n^2$. 6
 - (b) Show that, if two diameters be conjugate with respect to a given hyperbola, they will also be conjugate with respect to the conjugate hyperbola.

 61/2

2

- 6. (a) Show that $\frac{l}{r} = 1 + e \cos \theta$ and $\frac{l}{r} = -1 + e \cos \theta$ represent same conic.
 - (b) Prove that the condition that the line $\frac{l}{r} = A \cos \theta + B \sin \theta$ may touch the conic $\frac{l}{r} = 1 + e \cos \theta$ is $(A e)^2 + B^2 = 1$. 61/2
- 7. Trace the conic $4x^2 4xy + y^2 8x 6y + 5 = 0$.
- 8. (a) Find the area of the parallelogram whose adjacent sides are respectively $\vec{a} = \hat{i} + 2\hat{j} + 3\hat{k}$ and $\vec{b} = -3\hat{i} 2\hat{j} + \hat{k}$.
 - (b) If $\vec{a} = 3\hat{i} + 2\hat{j} + 2\hat{k}$ and $\vec{b} = \hat{i} + 2\hat{j} 2\hat{k}$, calculate $(\vec{a} + \vec{b}) \times (\vec{a} \vec{b})$.
- 9. (a) A particle moves along a curve whose parametric equations are $x = e^{-t}$, $y = 2 \cos 3t$, $z = 2 \sin 3t$. Find the velocity and acceleration of the particle at time t = 0.
 - (b) If $\overrightarrow{a} = t^2 \hat{i} t \hat{j} + (2t + 1) \hat{k}$ and $\overrightarrow{b} = (2t + 3)$ $\hat{i} + \hat{j} - t \hat{k}$, find $\frac{d}{dt} (\overrightarrow{a} \times \overrightarrow{b})$. 6½

- 10. (a) If \vec{R} (u) = $(u u^2)\hat{i} + 2u^3\hat{j} 3\hat{k}$, find \vec{R} (u) du. 6
 - (b) Evaluate $\int_{C} \vec{F} \cdot d\vec{r}$, where $\vec{F} = x^2 \hat{i} + y^2 \hat{j} + z^2 \hat{k}$ and C is the arc of the curve

$$\vec{r} = t\hat{i} + t^2\hat{j} + t^3\hat{k}$$
 from $t = 0$ to $t = 1$. 61/2

511 4 500