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Antempr AW guestions. Attempr 1wo paris from euch
guestion. lniernal choice is given. Marks for euch
guesiton and distribution of marks for differen:
purts of every equation are (ndicaied.

b (a) If f and g are integrable on [a, b] then show that
frg 13 integrable on [a. b] and

b 2
jf+g;jfr

it

{6)

L e =
[} =

(b) State and Prove Fundamental Theorem of Calculus
I. (6)
(c) Show that a bounded function f on the closed
interval [a. b] is integrable if and only if for each
€ >4, there exists a partinon P of {u_b] such
that Uif. P - L(f. Py < =. {6)

»)

2. (ay (i) Show that if a > 0 then the convervence of

N . .
the sequence {—-—— x20 is uniform on
14 nx

the interval [a. ={ but is not uniform on (3. =[.

{6)
P.T.0.
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{i1} Show that the Exponential function E is strictly

increasing on R, (3)

(by (i) Let {f”} be a seguence of continuous
functions on a set AcC E and suppose
fv—f uniformly on A. Prove that f is
continuous on A. (&)

.. N

{11y Show that ihe sequence <——:\I; does not
comerge uniformly an [0,2] by showing
that the limit function is not cortinuous on
ro. z1. {3

te) ti) Show that there exists a root ) of the cosine
funcuion € in the interval (\5\»6] such that

Cix) >0 for all x e [0. ] aud 20 is the
smallest positive root of the sine function

S. (6)

(iny Show that if a > 0, the series Z::I[nx) ‘)

x # 0 is uniformly convergent for |x| = a.

(3)
3. (a1 Show that:
tsint
[ == de
, 1
is not absolutely Convergent. (5)

(b) Examine the Convergence of the improper

integrals
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log t

dt

i |

» 2t

(iy |, —=dt 5)
= (

(cy Find the radius of Convergence of the Power

serjes

vl

YLy
.. ~ N n
(i) Z.-‘n, (5)

4.0 (a) Write J | N

I =3" dyvdy as an imegral over a

region. Sketch the region. Reverse the order of

integration and then evaluate, (6)

(by Bv using the change of variables u=x-y.

v v, show that

sin

”cos- Vi dydy =
-r: LN -\.,1

where Dbi‘s the region bounded by x # v = 1. x=0.
I tE (6

(¢ Evaluate

i dx dv d7

W |

‘\2 *;."_: ‘]_».’m
where W is the solid bounded by the spheres
Tyt = = atand X7+ a2t = b
a>h =0 :

and

(6)
P.T.0.
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(1) Let C be the pcrimbler of the Unit square [0.1] x
[0.1] in the plane. traversed in the counter

clockwise direction; Evaluate the line integral

.".’ N
J"_If.ds
c.
where Fix.v)=x7i+ Xyj ‘ (6)
(by Find the area of the graph of the function

2004 19
F{non k- 3‘:|‘x‘“ + }"“']

over the domain [0} - [6.1]. (6}

[ B [ -
Find the Mus of Fx.v.z) = 3xyTio+ 3xTy) + 2k out

—
I'a
—

of the unit sphere., (6)

6 () State Green's thearem. Usce it o find the work
done by the force field (3x + 4y) - (8N F9Y)
en a particle that moves once around the ellipse

I - 36 (5%2)

(b

Sraie Stohes's theorem. Use it to evaluate :

-

J “A[‘: ds

L.
where Fixvy.z) = 2% - \] =N FL“\: and C consists
of stranght lines joining (1. 0. Ty (0. 1.0} and
(0.0, 1. (3')

{c) State and prove Gé_.uss Divergence Theorem.
(5%2)
(3,000)



