2136

Your Roll No. .....

B.Sc. (Hons.) / II

C

MATHEMATICS -- Paper VII

(Algebra - II)

(Admissions of 2009 and onwards)

Time: 3 Hours Maximum Marks: 75

(Write your Roll No. on the top immediately on receipt of this question paper.)

Attempt two parts from each question.

All questions are compulsory.

- (a) Every permutation of a finite set can be written as a cycle or as a product of disjoint cycles.
  - (b) Suppose that  $G_1 = pq$ , where p and q are prime. Prove that every proper subgroup of G is cyclic.
  - (c) Let N be a normal subgroup of G and let H be a subgroup of G. If N is a normal subgroup of H, prove that H/N is a normal subgroup of G/N if and only if H is a normal subgroup of G.

 $(2 \times 6 = 12)$ 

- (a) Everey group is isomorphic to a group of permutations.
  - (b) Prove that there is no homomorphism from  $Z_8 \oplus Z_2$  onto  $Z_4 \oplus Z_4$ .
  - (c) If G is non-abelian, show that Aut(G) is not cyclic. (2×6=12)
- 3. (a) Let D be an integral domain. Then there exists a field F (called the field of quotients of D) that contains a subring isomorphic to D.
  - (b) If n is a positive integer, show that  $\langle n \rangle = nZ$  is a prime ideal of Z if and only if n is prime.
  - (c) Let φ be a homomorphism from a ring R into a ring S. Let A be an ideal of R and B be an ideal of S. then
    - (i) If  $\phi$  is onto, then  $\phi(A)$  is an ideal of S.
    - (ii)  $\phi$  (B) = {r \in R :  $\phi$ (r} \in B} is an ideal of R. (2×6=12)
- 4. (a) If D is an integral domain, then D[x] is an integral domain. Let F be a field, then F[x] is a principal ideal domain.
  - (b) Show that  $x^2 + x + 4$  is a irreducible over  $Z_{11}$ .

- (c) Let D be a principal ideal domain and let p ∈ D.
   Prove that p) is a maximal ideal in D if and only if p is irreducible. (2×6½=13)
- (a) Prove that if W₁ and W₂ are finite dimensional subspaces of a vector space V, then the subspace W. W₂ is finite dimensional and dim(W. + W₂) = dim(W₁) + dim(W₂) dim(W₁ ∩ W₂)
  - (b) Let V and W be vector spaces over F, and suppose that  $\{v_1, v_2, \dots, v_n\}$  is a basis for V. For  $w_1, w_2, \dots, w_n$  in W, there exists exactly one linear transformation  $T: V \to W$  such that  $T(v_1) = w_1$  for  $i = 1, 2, \dots, n$ .
  - (e) Let V and W be finite dimensional vector spaces over F of dimensions n and m respectively, and let  $\beta$  and  $\gamma$  be ordered bases for V and W respectively. Then the function  $\phi: L(V, W) \to M_{m,n}(F)$ , defined by  $\phi(T) = [T]_{\beta}^{p}$  for  $T \in L(V, W)$ , is an isomorphism, where L(V, W) is the vector space of all linear transformations from V into W.  $(2 \times 6 \frac{1}{2} = 13)$
- 6. (a) Suppose that V is a finite dimensional vector space with ordered basis
   β = {v<sub>1</sub>, v<sub>2</sub>, ..., v<sub>n</sub>}. For each i = 1.2..., n define

$$f_i(v) = a_i$$
, where  $[v]_{\beta} = \begin{bmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{bmatrix}$  is the coordinate

vector of v relative to  $\beta$ . Prove that  $f_i$  is a linear functional on V. Let  $\beta^* = \{f_1, f_2, ..., f_n\}$ . Then  $\beta^*$  is an ordered basis for  $V^*$  and for any

$$f \in V^*$$
, we have  $f = \sum_{i=1}^n f(v_i) f_i$ 

(b) Let T be a linear operator on R3 defined by

$$\begin{bmatrix} a_1 & & & 4a_1 + a_3 \\ \Gamma & a_2 & = & 2a_1 + 3a_2 + 2a_3 \\ a_3 & & & a_1 + 4a_3 \end{bmatrix}$$

Determine the eigenspaces of T corresponding to each eigenvalue and hence find a basis for R<sup>3</sup> consisting of eigenvectors of T.

(c) Let T be a linear operator on a finite - dimensional vector space V and suppose that  $V = W_1 \oplus W_2 \oplus W_3 \oplus W_4 \oplus W_5 \oplus W_6$ , where W is T - invariant subspace of V for each  $i(1 \le i \le k)$ . Suppose that  $f_i(t)$  is the characteristic polynomial of  $T_{w_1}(1 \le i \le k)$ , the restriction of T on  $W_1$ . Then  $f_1(t)f_2(t) \dots f_k(t)$  is the characteristic polynomial of T.  $(2 \times 6 \frac{1}{2} = 13)$ 

(2500)