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Show that a bounded function f on [a, b] is integrable if and only if for each
£ > {) there exists a partition P of [a. b] such that U(f, P) - L(f, P) <g. (6)

Let { be a continuous function on R and define

F(x) = jm f()dt forxe R

K-l

Show that F is differentiable on R and compute F'. (6)

. - . | g
State [Fundamental Theorem of Calculus 1l Find limwo-—'f0 e" dt. (6)
X

Show that if {is integrable on [a, b] then |f] is integrable on {a, b] and

[

Let f be defined on [0, b] as

<[l (42)

f(x) =

{x, X is rational

0. xisirrational

PT.0.
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Calculate upper and lower Darboux integrals for { on [0.b). is { integrable
on [0.h]? {6)

Let { be a bounded function on [a. b]. If P and  are partitions of [a. b]
such that P ¢ Q. where Q contains exactly one point extra than the points

of P. then prove that

LGP € L(LQ) £ W(F.Q) < UL, Py (6)

Examine the convergence of the following improper integrals

.o dt ! dt N
(1) -[(p o P ex (n) I(,'m (iii) L ¢ dt (2.2.2)

Show that the improper integral J‘f&mdl 15 convergent but not absolutely
t

convergent. {2.4)

Show that the improper integral jol 1P ‘(I - l)"f' dt converges if and only if

p>0. g>0. (6)

Show that a sequence (fn) of bounded functions on A ¢ R converges

uniformly on A to fif and only if ||f - fl], = 0. (5)

Let f,(x)= ———for x eR.n eN..

1+ nx”
Show that (fn) converges uniformly on R. (5
nx
Let f(x)= ———= for x20
et ) I+ n°x?

Show that the scquence (I‘n> converges only pointwise on[0, o) and

converges uniformly on [a, ©) , a> 0. (5)
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5. (a) Let f{x)= 1—5}—:; for x e{O0.l].neN.

Show that ([’n) converges non-untformly to an integrable function fon [0.1].

1 I
Also examine the relationship between L {(x)dx and lim, ,, ju f (x)dx.
¢
(5%)
(b) Show that series of functions
. ]
Y= ¥ 5
X'+

converges only pointwise on (1. =) and vniformly on [a,e). a> 1. (5%)

{c} Let (fﬂ) be a sequence of real valued functions on A ¢ R. Show that an

converges uniformiy on A if and only if for each £ > 0. 3 M(g) € N such
that

Eru«l(x) + f:h‘l(x) Tt f‘m(x)! <€

for all x € A and for all m > n 2 M(g). (5'%)

. . o - .
6. (1) (i} Show that power scries E Ua“x", with radius of convergence
n=
R, 0 < R £ o converges uniformly to a continuous function on

[-R.R ], 0<R <R (6)

(i) Show that the function

L) = [T v (o)

1s well defined and is differentiable on (0, «) with

1
L'y) = 5.y € (0.0, (3)

(b) (i) If the power scries Z:)_Oanx" has radius of convergence R, then the

power series

PTO.
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- w i ¥ a -
> nanx"'and Y e
no. "

n+1
also have radius of convergence R.

{11) Show that the function

Lt

. rooXx
[-,(x) Z“ GE, xeR

is stricily increasing on R and lim__ | E(x) = oo,
(c) (1) Show that

” (_ )" LAngl
arclanx:-'z ——— for |x: <1
n=0 o 2+

e . r*(0)
(uy H f{x) = Zn_oanx c1X <R then a = Vk=0.

(1t} Show that the [oganthmic function
y dt . .
L{y) = L ' y €{0. =) satisfies the relation

Liyz) = Liy) + L(z) ¥ v. z € (0, ).

(0)

&)

(3)
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3)

(2800)



