[This question paper contains 2 printed pages.]

Sr. No. of Question Paper: 1882 C Roll No......

Unique Paper Code : 235404

Name of the Course : B.Sc. (Hons.) Mathematics

Name of the Paper : MAHT 403 : Algebra III

Semester : IV

Duration : 3 Hours Maximum Marks : 75

Instructions for Candidates

1. Write your Roll No. on the top immediately on receipt of this question paper.

- 2. Attempt any two parts from each question.
- 1. (a) Define a subring and an ideal of a ring. Prove that the intersection of two ideals of a ring is an ideal. What about their union? Justify your answer.
 - (b) Define a field and prove that a finite integral domain is a field. Can we drop the condition of 'finiteness' in the hypothesis? Justify your answer.
 - (c) Define the characteristic of a ring. Prove that the characteristic of an integral domain is either zero or a prime number. What is the characteristic of Z₄ ⊕ 8Z?
 (6,6,6)
- 2. (a) Let R be a commutative ring with unity and A be an ideal of R. Show that R/A is a field if and only if A is maximal.
 - (b) (i) Determine all ring homomorphisms from Z to Z.
 - (ii) Is the ring 2Z isomorphic to 4Z? Justify your answer.
 - (c) Let A and B be any two ideals of a ring R. Prove that $\frac{A+B}{A} \cong \frac{B}{A \cap B}$.

 (6,6,6)
- 3. (a) Define a principal ideal domain. Let F be a field. Prove that F[x] is a principal ideal domain.

- (b) Prove that the ideal < x > is maximal in Q[x].
- (c) Let F be a field and $I = \{a_n x^n + a_{n-1} x^{n-1} + ... + a_0 : a_0, a_1, ..., a_n \in F \text{ and } a_0 + a_1 + ... + a_n = 0\}$. Show that I is an ideal of F[x] and find a generator of I.

 (6,6,6)
- 4. (a) Define an irreducible polynomial over a field. Let F be a field and p(x) ∈ F[x]. Prove that <p(x)> is a maximal ideal of F[x] if and only if p(x) is irreducible over F.
 - (b) In a principal ideal domain, prove that an element is irreducible if and only if it is prime.
 - (c) Prove that $\mathbb{Z}[\sqrt{-3}]$ is not a Euclidean domain. $(6\frac{1}{2},6\frac{1}{2},6\frac{1}{2})$
- 5. (a) Let $M_{m\times n}$ (F) denote the vector space of all $m\times n$ matrices over a field F. Let $W_1 = \{A \in M_{m\times n} (F) : A_{ij} = 0 \text{ whenever } i > j \}$ and $W_2 = \{A \in M_{m\times n} (F) : A_{ij} = 0 \text{ whenever } i \leq j \}$.

 Show that W_1 and W_2 are subspaces of $M_{m\times n}$ (F) and that $M_{m\times n}$ (F) = $W_1 \oplus W_2$.
 - (b) Let V be a vector space over a field F, char $F \neq 2$. Let u, v, w be distinct vectors in V. Prove that $\{u, v, w\}$ is linearly independent if and only if $\{u+v, v+w, w+u\}$ is linearly independent.
 - (c) Let $V = \mathbb{R}^4$, For the subspaces $W_1 = \{(x,y,z,t) \in \mathbb{R}^4 : x = t\}$ and $W_2 = \{(x,y,z,t) \in \mathbb{R}^4 : x = 0, y = -z\}$, find dim W_1 , dim W_2 , dim $(W_1 + W_2)$. $(6\frac{1}{2}, 6\frac{1}{2}, 6\frac{1}{2})$
- 6. (a) Let V and W be finite dimensional vector spaces over a field F and
 T: V → W be a linear transformation. Prove that nullity(T) + rank(T) = dim V.
 - (b) Let $T : \mathbb{R}^2 \to \mathbb{R}^3$ be defined by $T(x_1, x_2) = (x_1 x_2, x_1, 2x_1 + x_2)$. Let $\beta = \{(1,2), (2,3)\}$ and $\gamma = \{(1,1,0), (0,1,1), (2,2,3)\}$ be ordered bases for \mathbb{R}^2 and \mathbb{R}^3 respectively. Compute $[T]_{\beta}^{\gamma}$.
 - (c) Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be defined by $T(x_1, x_2, x_3) = (3x_1 2x_3, x_2, 3x_1 + 4x_2)$. Prove that T is invertible. Further, find $T^{-1}(x_1, x_2, x_3)$. (6½,6½,6½)