[This question paper contains 4 printed pages.]

Your Roll No.

2,144

B.Sc. (Hons.) / III

C

MATHEMATICS - Paper XII (iv)

(Number Theory and Cryptography)

(Admissions of 2009 and onwards)

Time: 3 Hours Maximum Marks: 75

(Write your Roll No. on the top immediately on receipt of this question paper.)

Attempt any two parts from each question.

All questions are compulsory.

- (a) A customer bought a dozen pieces of fruit, apples and oranges, for Rs. 132/-. If an apple costs 3 rupees more than an orange and more apples than oranges were purchased, how many pieces of each kind were bought?
 - (b) Prove that the linear congruence $ax \equiv b \pmod{n}$ has a solution if and only if $d \mid b$ where $d \equiv gcd$ (a, n). Also show that if $d \mid b$, then it has d mutually incongruent solutions modulo n. (5)
 - (c) What is the remainder when the following sum is divided by 4?

$$1^5 + 2^5 + 3^5 + \dots + 99^5 + 100^5$$
 (5)

P.T.O.

- 2. (a) Verify that 0, 1, 2, 2², 2³, 2⁴, 2⁹ form a complete set of residues modulo 11 but that 0, 1², 2², 3²,, 10² do not. (6½)
 - (b) State and prove Wilson theorem and also comment on converse of it. (6½)
 - (c) (i) Using Wilson's theorem, prove that for any odd prime p,

$$1^{2} \cdot 3^{2} \cdot 5^{2} \cdot 7^{2} \cdot \dots \cdot (p-2)^{2} \equiv (-1)^{(p-1)/2} \pmod{p}.$$
(4)

- (ii) Find the remainder when 15! is divided by 17. (21/2)
- 3. (a) Define Möbius function and prove that

$$\sum_{d,n} \mu(d) = \begin{cases} 1: & \text{if } n = 1 \\ 0: & \text{if } n > 1 \end{cases}$$
 (1+5½)

- (b) (i) If m and n are relatively prime positive integers, prove that
 month + none = 1 (mod mn).
 - (ii) Show that if gcd(a, n) = gcd(a-1, n) = 1, then

$$1 + a - a^{2} + \dots + a^{\phi(n)} - 1 \equiv 0 \pmod{n}.$$

$$(3\frac{1}{2} + 3)$$

(c) If the integer a has order k modulo n and h > 0, then prove that a^h has order $k/\gcd(h, k)$ modulo n. Further prove that if r is a primitive root of an

integer n and $\gcd(k, \phi(n)) = 1$, then r^k is also a primitive root of n. $(5\pm1\frac{1}{2})$

- 4. (a) If gcd(m, n) = 1, where $m \ge 2$ and $n \ge 2$, then prove that the integer mn has no primitive roots. (6½)
 - (b) If p is an odd prime, then prove that

$$\sum_{i=1}^{p-1} (a/p) = 0 ag{6}^{i}$$

- (c) Show that 7 and 18 are the only incongruent solutions of $x^2 \equiv -1 \pmod{5^2}$. (6½)
- (a) The ciphertext ALXWU VADCOJO has been enciphered with the cipher

$$C_1 = 4P_1 + 11P_2 \pmod{26}$$

 $C_2 \equiv 3P_1 + 8P_2 \pmod{26}$
derive the plaintext. (6½)

- (b) (i) A user of knapsack cryptosystem has the sequence 49, 32, 30, 43 as a listed encryption key. If the user's private key involves the modulus m = 50 and multiplier a = 33, determine the secret superincreasing sequence.
 - (ii) Find the unique solution of the following superincreasing knapsack problem:

$$51 - 3x_1 + 5x_2 + 9x_3 + 18x_4 + 37x_5$$
 (3½)
P.T.O.

(c) If u_n is the nth Fibonacci number then prove the following

(i)
$$\mu_n = \frac{\alpha^n - \beta^n}{\alpha - \beta}$$
; $n \ge 1$. where $\alpha = \left(\frac{1 + \sqrt{5}}{2}\right)$ and $\beta = \frac{1 - \sqrt{5}}{2}$.

$$(31/2) \mu_{2,+} \cdot \mu_{2n-1} - 1 = \mu_{2n}^2$$
 (31/2)

6. (a) Prove that for $n \ge 1$, the Fermat number $F_n = 2^{2^n} + 1$ is prime if and only if

$$3^{-1/2} \equiv -1 \pmod{F_n} \tag{6\%}$$

- (b) Prove that in a primitive Pythagorean triple x, y, z, the product xy is divisible by 12, hence 60 xyz. (6½)
- (c) (i) Prove that every integer n ≥ 170 is a sum of five squares, none of which are equal to zero. (3½)
 - (ii) Prove that a positive integer n can be represented as the difference of two squares if and only if n is not of the form 4k + 2.