[This question paper contains 7 printed pages.]

2145 Your Roll No.

B.Sc. (Hons.) / III

C

MATHEMATICS - Paper XII (V)

(Optimization)

(Admissions of 2009 and onwards)

Time: 3 Hours Maximum Marks: 70

(Write your Roll No. on the top immediately on receipt of this question paper.)

All questions are compulsory.

Choice is given within the questions.

- 1. Attempt any two parts:
 - (a) Solve the following problem by the method of constrained variation

Maximize
$$x_1 + x_2$$

subject to $x_1^2 + x_2^2 = 1$. (5)

(b) Solve the following problem by the method of Lagrange multipliers and determine the character of the stationary point

Optimize
$$y = 2x_1^2 + 2x_1x_2 + x_2^2 - 20x_1 - 14x_2$$

subject to $x_1 + 3x_2 \le 5$
 $2x_1 - x_2 \le 4$ (5)

2

(c) Find the minimum along the direction of steepest descent of the function

$$y = x_1^2 + x_2^2$$
starting at the point (1, 1). (5)

2. Attempt any two parts:

(a) Determine the optimal functions that determine the stationary points for the following integral

$$I[y_1, y_2] = \int_{\infty}^{\infty} \left\{ \left[1 + (y_1')^2\right]^{\frac{-1/2}{2}} + 16y_2^2 + (y_2'')^2 \right\} dx \quad (5)$$

(b) Find the optimum functions that minimizes the integral

$$1[y_1(x), y_2(x)] = \int_{x_1}^{x_1} (y_1^2 + y_2^2) dx$$

subject to the differential equation constraint

$$\frac{dy_1}{dx} = y_2 - y_1. {(5)}$$

(c) In a production scheduling problem, the production rate is to be changed from 100 units per unit time to 300 units per unit time in ten times unit i.e. p(0) = 100 and p(10) = 300. For this problem the cost as a function of time is

$$C(t) = 2(p')^2 + 4tp'$$

where $p' = \frac{dp}{dt}$. Determine the production rate as a function of time that minimizes the cost over the time period. (5)

3. Attempt any two parts:

- (a) Suppose $X^* = \begin{pmatrix} B & b \\ 0 \end{pmatrix}$ is a basic feasible solution of the linear programming problem minimize z = cX subject to AX = b, $X \ge 0$. Prove that X^* is an optimal basic feasible solution if $z_j c_j \le 0$ for all non-basic ariables. (8)
- (b) Use Big-M method to show the following linear programming problem is unbounded

$$Minimize z = -x_1 - x_2$$

subject to
$$x_1 - x_2 - x_3 = 1$$

 $-x_1 + x_2 + 2x_3 - x_4 = 1$
 $x_1, x_2, x_3, x_4 \ge 0.$ (8)

(c) Use simplex method to solve the system of equations

$$2x_1 + x_2 = 1$$

 $3x_1 - 2x_2 = 2$

and hence write the inverse of the coefficient

- 4. Attempt any two parts:
 - (a) Obtain the dual of the following linear programming problem

Maximize
$$z = 8x_1 + 3x_2 - 2x_3$$

subject to $x_1 - 6x_2 + x_3 \ge 2$
 $5x_1 + 7x_2 - 2x_3 = -4$
 $x_1 \le 0, x_2 \ge 0, x_3$ unrestricted

with one of the dual variables being unrestricted in sign. (5)

(b) Find an optimal solution to the following problem by solving its dual

Minimize
$$z = -3x_1 - 6x_2$$

subject to $4x_1 + 2x_2 \le 4$
 $x_1 - x_2 \ge -\frac{2}{3}$
 $x_1 \ge 0, x_2 \ge 0$ (5)

(c) Prove that if the primal problem has a finite optimal solution then the dual also has a finite optimal solution and the two optimal objective values are equal.

(5)

5. Attempt any three parts:

(a) Solve the cost minimizing transportation problem:

	D.	D_2	D_3	D_4	$a_{_1}$	
O ;	19	30	50	10	7	
02	70	30	40	60	9	•
О3	40	8	70	20	18	
b_{j}	5	8	7	14		(8)

(b) Solve the following cost minimizing assignment problem:

	[11	Ш	1V	V	+ VI
A	5	4	7	9	·]	2
В	3	8	5	,	. 9	6
С	. 7	8	1	9	7	5
D	8	6	5	7	9	3
E	7	, ,	9	8	3	5
F	5	6	8	7	i -i L	9

(c) (i) Use the minimax criterion to find the best strategy for each player

$$\begin{bmatrix} 2 & 3 & 1 \\ 1 & 4 & 0 \\ 3 & -2 & -1 \end{bmatrix}$$
 (4)

(ii) Use relation of dominance to solve the game whose pay-off matrix is

(d) (i) Solve graphically, the rectangular game whose pay-off matrix is

$$\begin{bmatrix} 2 & 1 & 0 & -2 \\ 1 & 0 & 3 & 2 \end{bmatrix} \tag{4}$$

(ii) Reduce the following game into its corresponding primal and dual linear programming problems:

$$\begin{bmatrix} -2 & 3 & -1 \\ 4 & -1 & 2 \\ 1 & 2 & 3 \end{bmatrix}$$
 (4)